亿级流量系统架构设计与实战

2024-05-14 17:12

本文主要是介绍亿级流量系统架构设计与实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 💂 个人网站:【 摸鱼游戏】【神级代码资源网站】【工具大全】
  • 🤟 一站式轻松构建小程序、Web网站、移动应用:👉注册地址
  • 🤟 基于Web端打造的:👉轻量化工具创作平台
  • 💅 想寻找共同学习交流,摸鱼划水的小伙伴,请点击【全栈技术交流群】

亿级流量系统架构设计与实战

在现代互联网时代,处理亿级流量的系统架构设计成为技术人员面临的重要挑战之一。本文将从架构原则、关键技术、实战案例三个方面,详细阐述如何设计和实现亿级流量的系统架构。

一、架构设计原则
  1. 高可用性(High Availability)

    • 冗余设计:通过多数据中心、多机房部署,确保单点故障不会影响整体系统。
    • 故障隔离:将系统分割为多个相互独立的模块,某个模块故障时不影响其他模块的运行。
  2. 可扩展性(Scalability)

    • 水平扩展:通过增加服务器数量来应对流量增长,常用的方法有负载均衡和集群化。
    • 垂直扩展:通过提升单台服务器的硬件性能来处理更多请求,但受限于硬件提升的边际效应。
  3. 高性能(Performance)

    • 缓存机制:使用本地缓存、分布式缓存(如Redis、Memcached)减轻数据库和网络负担。
    • 异步处理:通过消息队列(如Kafka、RabbitMQ)实现异步任务处理,减少系统的实时负载。
  4. 安全性(Security)

    • 数据加密:在数据传输和存储过程中使用加密技术,确保数据安全。
    • 权限控制:严格的权限管理和审计机制,防止未经授权的访问。
二、关键技术
  1. 负载均衡(Load Balancing)

    • 硬件负载均衡:如F5、A10等,提供高性能和高可靠性,但成本较高。
    • 软件负载均衡:如Nginx、HAProxy,通过配置实现流量分发,灵活性高,成本低。

    Nginx 负载均衡配置示例

http {upstream backend {server backend1.example.com;server backend2.example.com;server backend3.example.com;}server {listen 80;location / {proxy_pass http://backend;}}
}
  1. 分布式缓存(Distributed Cache)

    • Redis:提供键值存储、持久化、集群模式等功能,适用于高并发场景。
    • Memcached:轻量级缓存系统,适用于缓存查询结果、会话数据等。

    Redis 缓存示例(Python)

    import redisr = redis.Redis(host='localhost', port=6379, db=0)
    r.set('key', 'value')
    value = r.get('key')
    print(value)  # 输出 b'value'
    
  2. 数据库分片(Database Sharding)

    • 水平分片:将数据按某一维度(如用户ID)进行分片,分散到不同数据库实例。
    • 垂直分片:将数据按表进行拆分,不同表存储在不同数据库实例。

    MySQL 水平分片示例

    CREATE DATABASE user_db_0;
    CREATE DATABASE user_db_1;CREATE TABLE user_db_0.users (id INT PRIMARY KEY,name VARCHAR(255)
    );CREATE TABLE user_db_1.users (id INT PRIMARY KEY,name VARCHAR(255)
    );
    
  3. 消息队列(Message Queue)

    • Kafka:高吞吐量、分布式的消息队列系统,适用于日志收集、实时分析等场景。
    • RabbitMQ:支持多种协议的消息队列系统,适用于系统间解耦和异步任务处理。

    Kafka 生产者示例(Java)

    import org.apache.kafka.clients.producer.KafkaProducer;
    import org.apache.kafka.clients.producer.ProducerRecord;
    import java.util.Properties;public class Producer {public static void main(String[] args) {Properties props = new Properties();props.put("bootstrap.servers", "localhost:9092");props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");KafkaProducer<String, String> producer = new KafkaProducer<>(props);for (int i = 0; i < 100; i++) {producer.send(new ProducerRecord<>("my-topic", Integer.toString(i), Integer.toString(i)));}producer.close();}
    }
    
  4. 微服务架构(Microservices Architecture)

    • 服务拆分:将单体应用拆分为多个小而独立的服务,按功能模块化。
    • 服务治理:通过服务发现、负载均衡、熔断等技术实现服务的高可用和稳定性。

    Spring Cloud 示例(Java)

    @SpringBootApplication
    @EnableEurekaClient
    public class Application {public static void main(String[] args) {SpringApplication.run(Application.class, args);}
    }
    
三、实战案例

以下是一个处理亿级流量的系统架构案例:

  1. 架构设计

    • 前端通过CDN加速静态资源加载,减轻源站压力。
    • Nginx作为反向代理服务器,分发请求到后端应用服务器。
    • 应用服务器采用微服务架构,使用Spring Cloud、Docker、Kubernetes进行管理和部署。
    • Redis作为分布式缓存,加速频繁访问的数据查询。
    • 数据库采用MySQL分库分表,并使用TiDB作为分布式数据库解决方案。
    • Kafka用于日志收集和实时数据处理。
  2. 高可用和容灾

    • 数据中心多活部署,实现跨地域冗余。
    • 定期进行容灾演练,确保系统在灾难情况下能够迅速恢复。
  3. 性能优化

    • 使用Redis缓存热点数据,减少数据库查询压力。
    • 通过消息队列实现异步处理,提高系统响应速度。
    • 对应用服务器进行压力测试,找到性能瓶颈并优化代码。
  4. 安全措施

    • 数据传输使用HTTPS协议,加密通信内容。
    • 对关键操作进行日志记录和审计,确保操作可追溯。
四、总结

设计和实现亿级流量的系统架构需要遵循高可用性、可扩展性、高性能和安全性的原则,并结合负载均衡、分布式缓存、数据库分片、消息队列、微服务架构等关键技术。在实战中,通过合理的架构设计、性能优化和安全措施,可以有效应对亿级流量带来的挑战,确保系统的稳定性和可靠性。

通过本文的介绍,读者可以了解到如何从架构设计原则出发,结合实际案例中的具体技术实现,构建一个能够处理亿级流量的高可用、高性能的系统架构。

⭐️ 好书推荐

《亿级流量系统架构设计与实战》

在这里插入图片描述

【内容简介】

本书涵盖了亿级用户应用后台核心技术和系统架构设计思路,在内容结构上分为三大篇:架构知识篇(第1~3章),作为全书的基础知识篇,首先介绍后台的关键组件构成以及机房的搭建思路,然后介绍后台在应对高并发的读/写请求时通用的处理手段,最后介绍如何通过通用的服务治理手段来保障后台的高质量运行;基础服务设计篇(第4~6章),主要讲解基础服务的架构设计,这里选取的基础服务几乎是所有互联网后台都需要的专门系统,包括唯一ID生成器、用户登录服务和海量推送系统;核心服务设计篇(第7~13章),主要讲解在常见的社交互动场景中所需核心服务的架构设计,包括内容发布系统、通用计数系统、排行榜服务、用户关系服务、Timeline Feed服务、评论服务和IM服务。

📚 京东购买链接:《亿级流量系统架构设计与实战》

这篇关于亿级流量系统架构设计与实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989347

相关文章

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

CentOS系统使用yum命令报错问题及解决

《CentOS系统使用yum命令报错问题及解决》文章主要讲述了在CentOS系统中使用yum命令时遇到的错误,并提供了个人解决方法,希望对大家有所帮助,并鼓励大家支持脚本之家... 目录Centos系统使用yum命令报错找到文件替换源文件为总结CentOS系统使用yum命令报错http://www.cppc

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,