粒子群算法(Particle Swarm Optimization)

2024-05-14 02:52

本文主要是介绍粒子群算法(Particle Swarm Optimization),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

算法背景

粒子群优化算法(Particle Swarm Optimization,PSO)的灵感来源于鸟群或鱼群的觅食行为。想象一下,你在公园里看到一群鸟,它们在空中飞翔,寻找食物。每只鸟都不知道食物在哪里,但它们会根据周围其他鸟的位置和过去自己找到食物的经验来调整自己的飞行方向。如果一只鸟发现了食物,其他鸟很快也会朝着这个方向飞去。在这个过程中,整个鸟群像一个搜索系统,通过个体间的信息共享,找到最佳的觅食地点。

这个觅食的过程非常像一个优化问题:每只鸟(粒子)都在寻找食物(最优解),它们根据自己和同伴的经验(位置信息),在整个空间(搜索空间)中移动,最终找到食物的位置(最优解的位置)。

有读者可以感觉粒子群算法与麻雀算法有些相似。粒子群算法(PSO)和麻雀搜索算法(SSA)都是受自然界中群体行为启发的优化算法,它们都模仿了生物群体的社会行为来寻找最优解。然而,PSO是基于鸟群的觅食行为,而SSA则是模仿了麻雀的觅食和警戒行为,两者在模拟策略和行为细节上有所不同。

算法应用

粒子群优化算法(PSO)是一种非常灵活和多用途的优化算法,它在许多领域都有广泛的应用。以下是一些主要的应用场景:

  1. 工程优化:在工程领域,PSO常被用于设计优化、结构优化、电力系统优化等。比如,可以用它来优化建筑的结构设计,使其在成本和稳定性之间达到最佳平衡。
  2. 机器学习和数据挖掘:在机器学习中,PSO可以用于选择最佳的特征组合、调整算法的参数,甚至是用于训练神经网络。
  3. 网络和计算机科学:在网络设计、路由优化、云计算资源分配等领域,PSO也显示出了其有效性。比如,它可以用于优化网络中的数据流,确保信息快速且准确地传输。
  4. 经济学和金融:在金融市场分析、投资组合优化等方面,PSO也被广泛应用。它可以帮助投资者决定在何处投资,以及如何分配他们的资产,以获得最大的收益。
  5. 生物医学应用:在生物医学领域,PSO被用于生物信息学、药物设计和医疗影像分析等方面,帮助研究人员解决复杂的生物医学问题。

算法计算流程

粒子群优化算法 (PSO) 的计算流程可以详细分为以下几个步骤:
1. 初始化粒子群:
– 随机生成一组粒子 (解的候选者),每个粒子代表搜索空间中的一个潜在解。
– 为每个粒子指定一个随机的位置 (即解的值) 和速度。
2. 评估粒子的适应度:
– 对每个粒子的当前位置进行评估,根据优化问题的目标函数计算其适应度(如何接近最优解)。

3. 更新速度和位置:
– 对于每个粒子,根据下面的公式更新其速度:

标准的粒子群速度更新公式如下:

v_i^\mathrm{new~}=w\cdot v_i^\mathrm{old~}+c_1\cdot rand_1\cdot\left(\mathrm{~pbest~}_i-x_i^\mathrm{old~}\right)+c_2\cdot rand_2\cdot\left(g\mathrm{~best~}-x_i^\mathrm{old~}\right)

其中:
– v_{i}^{new} 是粒子 i 在新的迭代中的速度。
– w是惯性权重,用于控制前一速度对当前速度的影响。
v_{i}^{\mathrm{old}}是粒子 i 在前一迭代中的速度。
– c_{1} 和 c_{2} 是加速常数,用于调整个体和社会学习行为的相对影响。
– rand_{1}和  rand_{2}是两个介于 0 和 1 之间的随机数。
pbset_{i}是粒子 i 到目前为止找到的最优位置。
– gbest 是整个群体到目前为止找到的最优位置。
x_{i}^{old} 是粒子 i 在前一迭代中的位置。
– 更新粒子的位置:

x_i^\text{new }=x_i^\text{old }+v_i^\text{new}

4. 更新个体和全局最优解:
– 对于每个粒子,如果当前位置比之前遇到的最佳位置更优,则更新其个体最优解 (pbest)。
– 同时,从所有粒子中找出具有最佳适应度的位置,更新为全局最优解 (gbest)。

5. 迭代和终止条件:
– 重复步骤2-4,直到满足终止条件(如达到最大迭代次数或解的质量达到预定阈值) 。
6. 输出结果:
– 算法结束时,全局最优解 gbest 即为找到的最优解。

注意,粒子群优化算法 (PSO) 中的速度更新公式设计得非常巧妙,它反映了算法的核心思想: 通过模拟鸟群的社会行为来指导搜索过程。公式的设计考虑了以下几个关键因素:
1. 惯性权重 w :
– 这部分表示粒子的当前速度对其未来速度的影响,即粒子的惯性。较大的惯性权重有助于粒子探索更远的区域,促进全局搜索;较小的权重有利于粒子在局部区域进行详细搜索,促进局部优化。
2. 个体经验 c_1\cdot rand_1\cdot\left(\mathrm{~pbest~}_i-x_i^\mathrm{old~}\right) :
– 这部分反映了粒子自身的历史最佳位置 (个体经验) 对其速度的影响。粒子会考虑自己之前找到的最优位置(pbest),并朝这个方向调整速度。这里的随机数 rand 1 保证了搜索的随机性和多样性。
3. 社会经验c_2\cdot rand_2\cdot\left(g\mathrm{~best~}-x_i^\mathrm{old~}\right) :
– 这部分考虑了群体中其他粒子的信息。每个粒子也会朝着当前群体中已知的最优位置 (gbest) 移动。这里的随机数 rand 2 同样增加了搜索的随机性和多样性。
4. 学习因子 c1 和 c2 :
– 这两个学习因子分别表示个体经验和社会经验对速度更新的影响程度。这些因子的值决定了算法是倾向于利用个体的过去经验还是群体的共同经验。

总的来说,速度更新公式通过结合个体历史信息和群体共享信息,以及通过引入随机因素来增加搜索的多样性,从而有效地指导粒子群体在解空间中的搜索行为,这既保证了全局搜索能力,又保留了局部搜索的细致性。通过调整公式中的参数,可以控制算法的探索和开发能力,使其适应不同类型的优化问题。

算法示例推导

上述函数求解的python代码实现如下:

import numpy as np
import matplotlib.pyplot as plt
# 粒子群优化算法(PSO)求解 f(x, y) = x^2 + y^2
# 目标函数
def objective_function(position):x, y = positionreturn x**2 + y**2
# 参数设置
n_particles = 50
n_iterations = 10
dim = 2  # 搜索空间的维度,这里是二维空间
w = 0.5  # 惯性权重
c1 = 0.8  # 个体学习因子
c2 = 0.9  # 社会学习因子
# 初始化粒子群
particle_position = np.random.rand(n_particles, dim) * 10 - 5  # 初始位置
particle_velocity = np.random.rand(n_particles, dim) * 2 - 1  # 初始速度
pbest_position = particle_position.copy()  # 个体最优位置
pbest_value = np.full(n_particles, float('inf'))  # 个体最优值
gbest_value = float('inf')  # 全局最优值
gbest_position = np.array([float('inf'), float('inf')])  # 全局最优位置
# 迭代过程
for i in range(n_iterations):for j in range(n_particles):# 计算每个粒子的适应度值fitness = objective_function(particle_position[j])# 更新个体最优if fitness < pbest_value[j]:pbest_value[j] = fitnesspbest_position[j] = particle_position[j].copy()# 更新全局最优if fitness < gbest_value:gbest_value = fitnessgbest_position = particle_position[j].copy()for j in range(n_particles):# 更新速度particle_velocity[j] = (w * particle_velocity[j] + c1 * np.random.rand() * (pbest_position[j] - particle_position[j]) + c2 * np.random.rand() * (gbest_position - particle_position[j]))# 更新位置particle_position[j] += particle_velocity[j]
# 输出结果
print(f"全局最优位置:{gbest_position}")
print(f"全局最优值:{gbest_value}")
# 重新执行粒子群优化算法,进行5次迭代
# 重新初始化粒子位置和速度
particle_position = initial_particle_position.copy()  # 粒子位置
particle_velocity = np.random.rand(n_particles, dim) * 2 - 1  # 初始速度
pbest_position = particle_position.copy()  # 个体最优位置
pbest_value = np.full(n_particles, float('inf'))  # 个体最优值
gbest_value = float('inf')  # 全局最优值
gbest_position = np.array([float('inf'), float('inf')])  # 全局最优位置
# 执行5次迭代的过程
for _ in range(5):for j in range(n_particles):fitness = objective_function(particle_position[j][0], particle_position[j][1])if fitness < pbest_value[j]:pbest_value[j] = fitnesspbest_position[j] = particle_position[j].copy()if fitness < gbest_value:gbest_value = fitnessgbest_position = particle_position[j].copy()for j in range(n_particles):particle_velocity[j] = (w * particle_velocity[j] + c1 * np.random.rand() * (pbest_position[j] - particle_position[j]) + c2 * np.random.rand() * (gbest_position - particle_position[j]))particle_position[j] += particle_velocity[j]
# 创建3D图形
fig = plt.figure(figsize=(12, 6))
# 初始状态
ax1 = fig.add_subplot(1, 2, 1, projection='3d')
ax1.plot_surface(x, y, z, cmap='viridis', alpha=0.6)
ax1.scatter(initial_particle_position[:, 0], initial_particle_position[:, 1], objective_function(initial_particle_position[:, 0], initial_particle_position[:, 1]), color='r', s=10)
ax1.set_title('初始状态')
ax1.set_xlabel('X axis')
ax1.set_ylabel('Y axis')
ax1.set_zlabel('Z axis')
# 优化后的状态(5次迭代后)
ax2 = fig.add_subplot(1, 2, 2, projection='3d')
ax2.plot_surface(x, y, z, cmap='viridis', alpha=0.6)
ax2.scatter(particle_position[:, 0], particle_position[:, 1], objective_function(particle_position[:, 0], particle_position[:, 1]), color='r', s=10)
ax2.set_title('优化后的状态(5次迭代)')
ax2.set_xlabel('X axis')
ax2.set_ylabel('Y axis')
ax2.set_zlabel('Z axis')
plt.show()

最后,我分别可视化了粒子群优化算法初始状态和优化5轮后的状态,对比表明粒子群优化算法的效果。

图片[1]-粒子群算法(Particle Swarm Optimization)-VenusAI

  • 左图(初始状态):展示了目标函数的表面,并标记了初始化时粒子群的位置(红色点)。这些点代表粒子群初始时的随机分布。
  • 右图(优化后的状态 – 5次迭代):同样展示了目标函数的表面,并标记了经过5次迭代后粒子群的位置(红色点)。可以看到,粒子群的位置相比于初始状态有了明显的聚集,部分粒子开始靠近函数的最小值点(原点)。

这两幅图形象地说明了粒子群优化算法的工作原理:从随机搜索开始,经过多次迭代,粒子逐渐聚焦于搜索空间中的优化区域。虽然只进行了5次迭代,但我们已经可以看到粒子群朝着问题的最优解方向的逐渐聚集。随着更多迭代的进行,粒子群将更加集中地趋向于全局最优解。

这篇关于粒子群算法(Particle Swarm Optimization)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987550

相关文章

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

以canvas方式绘制粒子背景效果,感觉还可以

这个是看到项目中别人写好的,感觉这种写法效果还可以,就存留记录下 就是这种的背景效果。如果想改背景颜色可以通过canvas.js文件中的fillStyle值改。 附上demo下载地址。 https://download.csdn.net/download/u012138137/11249872

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

LeetCode 算法:二叉树的中序遍历 c++

原题链接🔗:二叉树的中序遍历 难度:简单⭐️ 题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root = [1,null,2,3] 输出:[1,3,2] 示例 2: 输入:root = [] 输出:[] 示例 3: 输入:root = [1] 输出:[1] 提示: 树中节点数目在范围 [0, 100] 内 -100 <= Node.

【Java算法】滑动窗口 下

​ ​    🔥个人主页: 中草药 🔥专栏:【算法工作坊】算法实战揭秘 🦌一.水果成篮 题目链接:904.水果成篮 ​ 算法原理 算法原理是使用“滑动窗口”(Sliding Window)策略,结合哈希表(Map)来高效地统计窗口内不同水果的种类数量。以下是详细分析: 初始化:创建一个空的哈希表 map 用来存储每种水果的数量,初始化左右指针 left

ROS2从入门到精通4-4:局部控制插件开发案例(以PID算法为例)

目录 0 专栏介绍1 控制插件编写模板1.1 构造控制插件类1.2 注册并导出插件1.3 编译与使用插件 2 基于PID的路径跟踪原理3 控制插件开发案例(PID算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌握ROS2底层基本分布式原理,并具有机器人建模和应用ROS2进行实际项目的开发和调试的工程能力。 🚀详情:《ROS2从入门到精通》 1 控制插

算法与数据结构面试宝典——回溯算法详解(C#,C++)

文章目录 1. 回溯算法的定义及应用场景2. 回溯算法的基本思想3. 递推关系式与回溯算法的建立4. 状态转移方法5. 边界条件与结束条件6. 算法的具体实现过程7. 回溯算法在C#,C++中的实际应用案例C#示例C++示例 8. 总结回溯算法的主要特点与应用价值 回溯算法是一种通过尝试各种可能的组合来找到所有解的算法。这种算法通常用于解决组合问题,如排列、组合、棋盘游

【图像识别系统】昆虫识别Python+卷积神经网络算法+人工智能+深度学习+机器学习+TensorFlow+ResNet50

一、介绍 昆虫识别系统,使用Python作为主要开发语言。通过TensorFlow搭建ResNet50卷积神经网络算法(CNN)模型。通过对10种常见的昆虫图片数据集(‘蜜蜂’, ‘甲虫’, ‘蝴蝶’, ‘蝉’, ‘蜻蜓’, ‘蚱蜢’, ‘蛾’, ‘蝎子’, ‘蜗牛’, ‘蜘蛛’)进行训练,得到一个识别精度较高的H5格式模型文件,然后使用Django搭建Web网页端可视化操作界面,实现用户上传一

【数据结构与算法 经典例题】使用队列实现栈(图文详解)

💓 博客主页:倔强的石头的CSDN主页               📝Gitee主页:倔强的石头的gitee主页    ⏩ 文章专栏:《数据结构与算法 经典例题》C语言                                   期待您的关注 ​​ 目录  一、问题描述 二、前置知识 三、解题思路 四、C语言实现代码 🍃队列实现代码: