AI绘画神级Stable Diffusion入门教程|快速入门SD绘画原理与安装

本文主要是介绍AI绘画神级Stable Diffusion入门教程|快速入门SD绘画原理与安装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是Stable Diffusion,什么是炼丹师?根据市场研究机构预测,到2025年全球AI绘画市场规模将达到100亿美元,其中Stable Diffusion(简称SD)作为一种先进的图像生成技术之一,市场份额也在不断增长,越来越多的人参与到AI掘金这场运动中来。炼丹师,就是指那些专门研究、开发与应用Stable Diffusion模型的专业人士或爱好者,他们在实践中不断优化模型,使其产生更高质量、更具创意的图像。

一、SD绘画原理

基本概念

名词
解释说明‍
Stable Diffusion是一种基于扩散模型的先进的人工智能技术,特别适用于文本到图像(Text-to-Image)的生成任务。该模型由CompVis、Stability AI、LAION等研究机构和公司合作研发,它利用扩散过程在潜在空间(latent space)中生成图像,而不是直接在高维像素空间中操作。
SD WebUIStable Diffusion Web UI (SD WebUI) 是一个用于交互式控制和使用 Stable Diffusion 模型的网页应用程序界面。用户可以通过这个界面输入文本提示(prompt)来驱动模型生成相应的图像,提供了简单易用的方式来体验和定制基于 Stable Diffusion 的文本到图像生成过程。
Python是一种广泛使用的高级编程语言,以其语法简洁清晰和代码可读性强而著称。在AI领域,Python尤为流行,因为它拥有丰富的科学计算、机器学习和数据处理相关的库,比如NumPy、Pandas和TensorFlow等。在部署和使用像Stable Diffusion这样的深度学习模型时,Python常被作为开发和运行环境的基础。
Controlnet插件
是针对 Stable Diffusion 模型开发的一种功能扩展插件,它允许用户在文本生成图像的过程中实现更为细致和精确的控制。该插件使得用户不仅能够通过文本提示(prompt)指导模型生成图像,还能添加额外的输入条件,比如控制图像的构图、颜色、纹理、物体位置、人物姿势、景深、线条草图、图像分割等多种图像特征。通过这种方式,ControlNet 提升了 AI 绘画系统的可控性和灵活性,使得艺术创作和图像编辑更加精细化。
Controlnet模型是配合上述插件工作的一个组成部分,它是经过训练以实现对大型预训练扩散模型(如 Stable Diffusion)进行细粒度控制的附加神经网络模型。ControlNet 模型可以学习如何根据用户的特定需求去调整原始扩散模型的输出,即便是在训练数据有限的情况下,依然能够确保生成结果的质量和稳定性。例如,ControlNet 可能包括用于识别和利用边缘映射、分割映射或关键点信息的子模块,从而实现对生成图像的特定区域进行针对性修改或强化。
VAE

Variational Autoencoder (VAE): 变分自编码器是一种概率生成模型,它结合了编码器(将输入数据编码为潜在空间中的概率分布)和解码器(从潜在空间重构数据)的概念。在图像生成场景中,VAE可以用来学习数据的潜在表示,并基于这些表示生成新的图像。

CHECKPOINT
SD能够绘图的基础模型,因此被称为大模型、底模型或者主模型,WebUI上就叫它Stable Diffusion模型。安装完SD软件后,必须搭配主模型才能使用。不同的主模型,其画风和擅长的领域会有侧重。checkpoint模型包含生成图像所需的一切,不需要额外的文件。
hyper-network超网络是一种模型微调技术,最初是由NOVA AI 公司开发的。它是一个附属于Stable Diffusion 稳定扩散模型的小型神经网络,是一种额外训练出来的辅助模型,用于修正SD稳定扩散模型的风格。
LORA‍
全称是Low-Rank Adaptation of Large Language Models 低秩的适应大语言模型,可以理解为SD模型的一种插件,和hyper-network,controlNet一样,都是在不修改SD模型的前提下,利用少量数据训练出一种画风/IP/人物,实现定制化需求,所需的训练资源比训练SD模要小很多,非常适合社区使用者和个人开发者。LoRA最初应用于NLP领域,用于微调GPT-3等模型(也就是ChatGPT的前生)。由于GPT参数量超过千亿,训练成本太高,因此LoRA采用了一个办法,仅训练低秩矩阵(low rank matrics),使用时将LoRA模型的参数注入(inject)SD模型,从而改变SD模型的生成风格,或者为SD模型添加新的人物/IP。

prompt

提示词/咒语

工作原理

Stable Diffusion就是一个接收文本提示词,并生成相应图像的生成模型。

SD来自于扩散模型(Diffusion Model)

扩散模型:(Diffusion Model)的核心原理被生动地比喻为物理学中的扩散过程,通过前向扩散过程逐渐将图像转化为噪声图像,然后通过反向扩散过程恢复出清晰的图像。在Stable Diffusion中,模型训练了一个噪声预测器(noise predictor),它是一个U-Net结构的神经网络,可以预测并从图像中去除噪声,从而重构原始图像。

然而,传统的扩散模型在图像空间中的运算效率极低,不适合实时应用。为此,Stable Diffusion采用了在潜在空间(latent space)中进行扩散的过程,利用变分自编码器(VAE)将图像压缩到较低维度的空间,极大地提高了计算速度和效率。

Stable Diffusion的具体工作流程包括:

  1. 输入图像被编码到潜在空间。

  2. 添加噪声,并通过噪声预测器估算添加的噪声量。

  3. 反复迭代,通过噪声预测器预测并减去潜在噪声。

  4. 使用VAE的解码器将清理过的潜在图像转换回像素空间,生成最终图像。

学习资料

国外一手资料:

stability.ai官网
https://stability.ai/about

github开源项目

https://github.com/CompVis/stable-diffusion/blob/main/README.md

The Illustrated Stable Diffusion @Jay Alammar 讲的原理
https://jalammar.github.io/illustrated-stable-diffusion/

二、本地部署安装SD WebUI

硬件条件

说明:本地部署的硬件要求,当然使用云端部署租赁更高端的机器也是没问题。


最低推荐配置

推荐配置

备注

显卡(GPU)

GTX1050Ti

低配推荐:RTX4060Ti-16G高配推荐:RTX4090

为达到良好的体验,请尽可能使用8GB显存及以上显卡。低显存虽然能跑,但是体验极差

内存(RAM)

8GB内存

总内存24GB及以上

可以开启虚拟内存,内存过小会在加载模型的时候出现问题

存储空间

20GB任意存储设备

500GB以上固态硬盘

强烈建议单独使用一个盘符,如果不想启动的时候等10分钟的话,那么只推荐使用SSD

CPU

x86架构的Intel或AMD等处理器都可以,

若为Mac电脑建议使用搭载M系列芯片的机型。

  1. 显卡VRAM在4GB以下的会很容易遇到显存不足的问题,即使使用放大插件也就非常慢(以时间换显存)

2. 显卡较差/显存严重不足时可以开启CPU模式,但是速度非常慢。你不希望一个小时一张图的话那就别想着用CPU跑图。


软件需求

Windows:最低要求为Windows 10 64比特,请确保系统已更新至最新版本。

macOS:最低要求为macOS Monterey (12.5),如果可以的话请使用最新版macOS。建议使用搭载Apple Silicon M芯片 (M1、M2) 的Mac机型。旧款Mac需配备AMD独立显卡,只有Intel核显的不能使用。


下载地址 (不藏着掖着,直接拿走不谢)

SD WebUI秋叶整合包与SD Webui绘世启动器

请看文末扫描获取

SD WebUI秋叶整合包【A卡适配版】

请看文末扫描获取

安装部署

2024.1月 更新了最新的整合包,无需任何操作即可达到最佳速度,解压打开即用,内置启动器。

整合包做了哪些事情?打包了 Python、Git、CUDA 等等必须的环境,并且放了运行必须的模型。简单来说,整合包就是 SD-WebUI内核+启动器+安装好的环境+必须的模型。你只需下载它解压就可以直接启动运行!

特别鸣谢,安装包作者@秋葉aaaki


三、生成第一张SD绘画

启动“A启动器.exe”

加载更新

点击“一键启动”

[不要关闭它],它会自动打开,浏览器地址"http://127.0.0.1:7860/?__theme=dark"

基本功能介绍

界面及操作说明
stable diffusion模型
下拉,替换大模型/底模
正面提示词 Tag

(想要的内容,提示词)

如:masterpiece, best quality,

反面提示词 Tag

(不想要的内容,提示词)

如:lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry

提示词加权重

(girl) 加权重,这里是1.1倍。

((girl)) 加很多权重,1.1*1.1=1.21倍,以此类推。

提示词减权重[girl] 减权重,一般用的少。减权重也一般就用下面的指定倍数。
提示词指定权重
(girl:1.5) 指定倍数,这里是1.5倍的权重。还可以 (girl:0.9) 达到减权重的效果
采样迭代步数

不需要太大,一般在50以内。通常28是一个不错的值。

采样方法
没有优劣之分,但是他们速度不同。全看个人喜好。推荐的是图中圈出来的几个,速度效果都不错
提示词相关性代表你输入的 Tag 对画面的引导程度有多大,可以理解为 “越小AI越自由发挥”,太大会出现锐化、线条变粗的效果。太小AI就自由发挥了,不看 Tag
随机种子生成过程中所有随机性的源头 每个种子都是一幅不一样的画。默认的 -1 是代表每次都换一个随机种子。由随机种子,生成了随机的噪声图,再交给AI进行画出来

切换webUI黑白皮肤,修改浏览器http地址:
白:http://127.0.0.1:7860/?__theme=light
黑:http://127.0.0.1:7860/?__theme=dark

输入提示词【1 girl】,点击生成即可:

(我安装了皮肤插件,所以和你运行的界面稍微酷炫一点_)

这里直接将该软件分享出来给大家吧~

这份完整版的stable diffusion资料我已经打包好,需要的点击下方添加,即可前往免费领取!

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的stable diffusion资料我已经打包好,需要的点击下方添加,即可前往免费领取!

这篇关于AI绘画神级Stable Diffusion入门教程|快速入门SD绘画原理与安装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/985647

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G