超分辨率重建——梯度下降、坐标下降、牛顿迭代

2024-05-13 03:32

本文主要是介绍超分辨率重建——梯度下降、坐标下降、牛顿迭代,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在阅读相关文献的时候,经常会遇到梯度下降,坐标下降,牛顿迭代这样的术语,今天把他们的概念整理一下。


梯度下降 

整理自百度

梯度下降法是一个最优化算法,通常也称为最速下降法。

顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。
其迭代公式为
 
,其中
 
代表梯度负方向,
 
表示梯度方向上的搜索步长。梯度方向我们可以通过对函数求导得到,步长的确定比较麻烦,太大了的话可能会发散,太小收敛速度又太慢。一般确定步长的方法是由线性搜索算法来确定,即把下一个点的坐标看做是a k+1的函数,然后求满足f(a k+1)的最小值的 即可。
因为一般情况下,梯度向量为0的话说明是到了一个极值点,此时梯度的幅值也为0.而采用梯度下降算法进行最优化求解时,算法迭代的终止条件是梯度向量的幅值接近0即可,可以设置个非常小的常数阈值。
举一个非常简单的例子,如求函数
 
的最小值。
利用梯度下降的方法解题步骤如下:
1、求梯度,
2、向梯度相反的方向移动
 
,如下
 
,其中,
 
为步长。如果步长足够小,则可以保证每一次迭代都在减小,但可能导致收敛太慢,如果步长太大,则不能保证每一次迭代都减少,也不能保证收敛。
3、循环迭代步骤2,直到
 
的值变化到使得
 
在两次迭代之间的差值足够小,比如0.00000001,也就是说,直到两次迭代计算出来的
 
基本没有变化,则说明此时
 
已经达到局部最小值了。
4、此时,输出
 
,这个
 
就是使得函数
 
最小时的
 
的取值 。

%% 最速下降法图示
% 设置步长为0.1,f_change为改变前后的y值变化,仅设置了一个退出条件。
syms x;f=x^2;
step=0.1;x=2;k=0;         %设置步长,初始值,迭代记录数
f_change=x^2;             %初始化差值
f_current=x^2;            %计算当前函数值
ezplot(@(x,f)f-x.^2)       %画出函数图像
axis([-2,2,-0.2,3])       %固定坐标轴
hold on
while f_change>0.000000001                %设置条件,两次计算的值之差小于某个数,跳出循环x=x-step*2*x;                         %-2*x为梯度反方向,step为步长,!最速下降法!f_change = f_current - x^2;           %计算两次函数值之差f_current = x^2 ;                     %重新计算当前的函数值plot(x,f_current,'ro','markersize',7) %标记当前的位置drawnow;pause(0.2);k=k+1;
end
hold off
fprintf('在迭代%d次后找到函数最小值为%e,对应的x值为%e\n',k,x^2,x)
缺点:
  • 靠近极小值时收敛速度减慢。
  • 直线搜索时可能会产生一些问题。
  • 可能会“之字形”地下降。
    容易陷入局部最优解


坐标下降
转自http://blog.csdn.net/u013802188/article/details/40476989
首先介绍一个算法:coordinate-wise minimization

问题的描述:给定一个可微的凸函数,如果在某一点x,使得f(x)在每一个坐标轴上都是最小值,那么f(x)是不是一个全局的最小值。

形式化的描述为:是不是对于所有的d,i都有

这里的代表第i个标准基向量。

答案为成立。


这是因为:


但是问题来了,如果对于凸函数f,若不可微该会怎样呢?


答案为不成立,上面的图片就给出了一个反例。

那么同样的问题,现在,其中g是可微的凸函数,每一个hi都是凸的?

答案为成立。


证明如下,对每一个y



坐标下降(Coordinate descent):

这就意味着,对所有的,其中g是可微的凸函数,每一个hi都是凸的,我们可以使用坐标下降寻求一个最小值,我们从一个最初的猜想开始,对k进行循环:


每一次我们解决了,我们都会使用新的值。

Tseng (2001)的开创性工作证明:对这种f(f在紧集上连续,且f到达了其最小值),的极限值,k=1,2,3….是f的一个最小元(minimizer)。

在实分析领域:

随后收敛与x*( Bolzano-Weierstrass)

收敛于f*( monotoneconvergence)

其中:

坐标下降的顺序是任意的,可以是从1到n的任意排列。

可以在任何地方将单个的坐标替代成坐标块

关键在于一次一个地更新,所有的一起更新有可能会导致不收敛


我们现在讨论一下坐标下降的应用:


线性回归:

,A有p列:

最小化xi,对所有的xj,j不等于i:


解得:


坐标下降重复这个更新对所有的

对比坐标下降与梯度下降在线性回归中的表现(100个实例,n=100,p=20)


将坐标下降的一圈与梯度下降的一次迭代对比是不是公平呢?是的。


其中r=y-Ax。每一次的坐标更新需要O(n)个操作,其中O(n)去更新r,O(n)去计算,所以一圈就需要O(np),跟梯度下降是一样的。


我们用相同的例子,用梯度下降进行比较,似乎是与计算梯度下降的最优性相违背。

那么坐标下降是一个一阶的方法吗?事实上不是,它使用了比一阶更多的信息。


现在我们再关注一下支持向量机:

SVM对偶中的坐标下降策略:


SMO(Sequentialminimal optimization)算法是两块的坐标下降,使用贪心法选择下一块,而不是用循环。

回调互补松弛条件(complementaryslackness conditions):


v,d,s是原始的系数,截距和松弛,其中,使用任何的(1)中i使得来计算d,利用(1)(2)来计算2.

SMO重复下面两步:

选出不满足互补松弛的αi,αj

最小化αi,αj使所有的变量满足条件


第一步使用启发式的方法贪心得寻找αi,αj,第二步使用等式约束。


牛顿迭代法
转自http://blog.csdn.net/zkq_1986/article/details/52317258

牛顿迭代法(Newton’s method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。 
把f(x)在x0点附近展开成泰勒级数 f(x) = f(x0)+(x-x0)f’(x0)+(x-x0)^2*f”(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f’(x0)(x-x0)=0 设f’(x0)≠0则其解为x1=x0-f(x0)/f’(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f’(x(n))。





这篇关于超分辨率重建——梯度下降、坐标下降、牛顿迭代的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984558

相关文章

迭代器模式iterator

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/iterator 不暴露集合底层表现形式 (列表、 栈和树等) 的情况下遍历集合中所有的元素

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

多线程篇(阻塞队列- LinkedBlockingDeque)(持续更新迭代)

目录 一、LinkedBlockingDeque是什么 二、核心属性详解 三、核心方法详解 addFirst(E e) offerFirst(E e) putFirst(E e) removeFirst() pollFirst() takeFirst() 其他 四、总结 一、LinkedBlockingDeque是什么 首先queue是一种数据结构,一个集合中

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

SW - 引入第三方dwg图纸后,修改坐标原点

文章目录 SW - 引入第三方dwg图纸后,修改坐标原点概述笔记设置图纸新原点END SW - 引入第三方dwg图纸后,修改坐标原点 概述 在solidworks中引入第三方的dwg格式图纸后,坐标原点大概率都不合适。 全图自动缩放后,引入的图纸离默认的原点位置差很多。 需要自己重新设置原点位置,才能自动缩放后,在工作区中间显示引入的图纸。 笔记 将dwg图纸拖到SW中

多线程篇(阻塞队列- LinkedBlockingQueue)(持续更新迭代)

目录 一、基本概要 1. 构造函数 2. 内部成员 二、非阻塞式添加元素:add、offer方法原理 offer的实现 enqueue入队操作 signalNotEmpty唤醒 删除线程(如消费者线程) 为什么要判断if (c == 0)时才去唤醒消费线程呢? 三、阻塞式添加元素:put 方法原理 图解:put线程的阻塞过程 四、非阻塞式移除:poll方法原理 dequ

word转PDF后mathtype公式乱码以及图片分辨率降低等一系列问题|完美解决

word转PDF后mathtype公式乱码以及图片分辨率降低等一系列问题|完美解决 问题描述 最近在投一篇期刊论文,直接提交word文档,当时没有查看提交预览,一审审稿意见全是:公式乱码、公式乱码、乱码啊!!!是我大意了,第二次提交,我就决定将word文档转成PDF后再提交,避免再次出现公式乱码的问题。接着问题又来了,我利用‘文件/导出’或‘文件/另存为’的方式将word转成PDF后,发现公式

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

六、我们应当怎样做需求调研:迭代

前面我一直在反复强调这样一个观点,需求分析不是一蹴而就的,是一个反复迭代的过程。它将从第一次需求分析开始,一直持续到整个项目生命周期。为什么这样说呢?让我们一起来分析分析。  在第一次的需求分析阶段,我们在一段时期内需要与客户进行反复地讨论,这个过程往往是这样一个反复循环的过程:需求捕获->需求整理->需求验证->再需求捕获••••••  需求捕获,就是我们与客户在一起开研讨会

三维激光扫描点云配准外业棋盘的布设与棋盘坐标测量

文章目录 一、棋盘标定板准备二、棋盘标定板布设三、棋盘标定板坐标测量 一、棋盘标定板准备 三维激光扫描棋盘是用来校准和校正激光扫描仪的重要工具,主要用于提高扫描精度。棋盘标定板通常具有以下特点: 高对比度图案:通常是黑白相间的棋盘格,便于识别。已知尺寸:每个格子的尺寸是已知的,可以用于计算比例和调整。平面标定:帮助校准相机和激光扫描仪之间的位置关系。 使用方法 扫描棋盘: