Python大数据分析——Logistic回归模型

2024-05-12 05:04

本文主要是介绍Python大数据分析——Logistic回归模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Logistic回归模型

  • 概念
  • 理论分析
  • 模型评估
    • 混淆矩阵
    • ROC曲线
    • KS曲线
  • 函数
  • 示例

概念

之前的回归的变量是连续的数值变量;而Logistics回归是二元离散值,用来解决二分类问题。

理论分析

在这里插入图片描述
上式中的hβ(X)也被称为Loqistic回归模型,它是将线性回归模型的预测值经过非线性的Logit函数转换为[0,1]之间的概率值。

其函数图像为:
在这里插入图片描述
其中,z∈(-∞,+∞)。当z趋于正无穷大时,e**-z将趋于0,进而导致g(z)逼近于1;相反,当z趋于负无穷大时,e**-z会趋于正无穷大,最终导致g(z)逼近于0;当z=0时,e**-z=1,所以得到g(z)=0.5。

我们对模型进行转化:
在这里插入图片描述

参数求解过程:
不难发现y=1的时候为p,y=0的时候为1-p,那么可以等价为(将离散状态变为函数状态)
在这里插入图片描述

进行极大似然估计(因为没有残差函数):
构造似然函数,有n行数据,每行数据的概率发生累乘起来
在这里插入图片描述

我们对其进行对数化,优化计算:
log(x1x2x3)=logx1+logx2+logx3
在这里插入图片描述
梯度下降:
我们只需要将其变为负数,就有极大求为了极小值,通过此来进行梯度下降的算法。
在这里插入图片描述
对其求偏导,每一个参数β做梯度下降
在这里插入图片描述
其中,α为学习率,也称为参数βj变化的步长,通常步长可以取0.1,0.05,0.01等。如果设置的α过小,会导致βj变化微小,需要经过多次迭代,收敛速度过慢;但如果设置的过大,就很难得到理想的βj值,进而导致目标函数可能是局部最小。

求出的参数含义:
通过建模可以得到对应的系数B和,则假设影响是否患癌的因素有性别和肿瘤两个变量Logistic回归模型可以按照事件发生比的形式改写为:
在这里插入图片描述
其中p/(1-p)叫优势比/发生比。

分别以性别变量x1和肿瘤体积变量x2为例,解释系数β1和β2的含义。假设性别中男用1表示,女用0表示,则:
在这里插入图片描述
所以,性别变量的发生比率为e** β1,表示男性患癌的发生比约为女性患癌发生比的e**β1倍。

对于连续型的自变量而言,参数解释类似,假设肿瘤体积为Volum0,当肿瘤体积增加1个单位时体积为Volum0+1,则:
在这里插入图片描述
所以,在其他变量不变的情况下,肿瘤体积每增加一个单位,将会使患癌发生比变化e**β2倍。

模型评估

混淆矩阵

在这里插入图片描述
A:表示正确预测负例的样本个数,用TN表示。
B:表示预测为负例但实际为正例的个数,用FN表示。
C:表示预测为正例但实际为负例的个数,用FP表示。
D:表示正确预测正例的样本个数,用TP表示。
准确率:表示正确预测的正负例样本数与所有样本数量的比值,即(A+D)/(A+B+C+D)。
正例覆盖率:表示正确预测的正例数在实际正例数中的比例,即D/(B+D)。
负例覆盖率:表示正确预测的负例数在实际负例数中的比例,即A/(A+C)。
正例命中率:表示正确预测的正例数在预测正例数中的比例,即D/(C+D),

正例:指的是非常关心的例子叫做正例,这里面就是恶性。

ROC曲线

在这里插入图片描述
图中的红色线为参考线,即在不使用模型的情况下,Sensitivity(正例覆盖率) 和 1-Specificity(1-负例覆盖率) 之比恒等于 1。通常绘制ROC曲线,不仅仅是得到左侧的图形,更重要的是计算折线下的面积,即图中的阴影部分,这个面积称为AUC。在做模型评估时,希望AUC的值越大越好,通常情况下,当AUC在0.8以上时,模型就基本可以接受了。

KS曲线

在这里插入图片描述
x轴叫阈值,图中的两条折线分别代表各分位点下的正例覆盖率和1-负例覆盖率,通过两条曲线很难对模型的好坏做评估,一般会选用最大的KS值作为衡量指标。KS的计算公式为:KS = Sensitivity-(1- Specificity) = Sensitivity+ Specificity-1。对于KS值而言,也是希望越大越好,通常情况下,当KS值大于0.4时,模型基本可以接受。

函数

LogisticRegression(tol=0.0001, fit_intercept=True,class_weight=None, max_iter=100)
tol:用于指定模型跌倒收敛的阈值
fit_intercept:bool类型参数,是否拟合模型的截距项,默认为True
class_weight:用于指定因变量类别的权重,如果为字典,则通过字典的形式{class_label:weight}传递每个类别的权重;如果为字符串’balanced’,则每个分类的权重与实际样本中的比例成反比,当各分类存在严重不平衡时,设置为’balanced’会比较好;如果为None,则表示每个分类的权重相等
max_iter:指定模型求解过程中的最大迭代次数, 默认为100

示例

  1. 我们先进行数据训练
# 导入第三方模块
import pandas as pd
import numpy as np
from sklearn import model_selection
from sklearn import linear_model# 读取数据
sports = pd.read_csv(r'D:\pythonProject\data\Run or Walk.csv')
# 提取出所有自变量名称
predictors = sports.columns[4:]
# 构建自变量矩阵
X = sports.loc[:,predictors]
# 提取y变量值
y = sports.activity
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)# 利用训练集建模
sklearn_logistic = linear_model.LogisticRegression()
sklearn_logistic.fit(X_train, y_train)
# 返回模型的各个参数(截距项和偏回归系数)
print(sklearn_logistic.intercept_, sklearn_logistic.coef_)

输出:

[4.36637441] [[ 0.48695898 6.87517973 -2.44872468 -0.01385936 -0.16085022 0.13389695]]

  1. 进行下预测查看效果
# 模型预测
sklearn_predict = sklearn_logistic.predict(X_test)
# 预测结果统计
pd.Series(sklearn_predict).value_counts()

输出:

0 12119 # 步行状态
1 10028 # 跑步状态
Name: count, dtype: int64

  1. 我们来看下混淆矩阵
# 导入第三方模块
from sklearn import metrics
# 混淆矩阵
cm = metrics.confusion_matrix(y_test, sklearn_predict, labels = [0,1])
cm

输出:

array([[9969, 1122],
[2150, 8906]], dtype=int64)

计算下有用值:

Accuracy = metrics._scorer.accuracy_score(y_test, sklearn_predict)
Sensitivity = metrics._scorer.recall_score(y_test, sklearn_predict)
Specificity = metrics._scorer.recall_score(y_test, sklearn_predict, pos_label=0)
print('模型准确率为%.2f%%' %(Accuracy*100))
print('正例覆盖率为%.2f%%' %(Sensitivity*100))
print('负例覆盖率为%.2f%%' %(Specificity*100))

输出:

模型准确率为85.23%
正例覆盖率为80.55%
负例覆盖率为89.88%

  1. ROC曲线
# y得分为模型预测正例的概率
y_score = sklearn_logistic.predict_proba(X_test)[:,1]
# 计算不同阈值下,fpr和tpr的组合值,其中fpr表示1-Specificity,tpr表示Sensitivity
fpr,tpr,threshold = metrics.roc_curve(y_test, y_score)
# 计算AUC的值
roc_auc = metrics.auc(fpr,tpr)# 绘制面积图
plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')
# 添加边际线
plt.plot(fpr, tpr, color='black', lw = 1)
# 添加对角线
plt.plot([0,1],[0,1], color = 'red', linestyle = '--')
# 添加文本信息
plt.text(0.5,0.3,'ROC curve (area = %0.2f)' % roc_auc)
# 添加x轴与y轴标签
plt.xlabel('1-Specificity')
plt.ylabel('Sensitivity')
# 显示图形
plt.show()

输出:
在这里插入图片描述
5. KS曲线

# 调用自定义函数,绘制K-S曲线
plot_ks(y_test = y_test, y_score = y_score, positive_flag = 1)

输出:
在这里插入图片描述

总代码:

# 导入第三方模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn import linear_model
from sklearn import metrics# 0.自定义绘制ks曲线的函数
def plot_ks(y_test, y_score, positive_flag):# 对y_test重新设置索引y_test.index = np.arange(len(y_test))# 构建目标数据集target_data = pd.DataFrame({'y_test':y_test, 'y_score':y_score})# 按y_score降序排列target_data.sort_values(by = 'y_score', ascending = False, inplace = True)# 自定义分位点cuts = np.arange(0.1,1,0.1)# 计算各分位点对应的Score值index = len(target_data.y_score)*cutsscores = np.array(target_data.y_score)[index.astype('int')]# 根据不同的Score值,计算Sensitivity和SpecificitySensitivity = []Specificity = []for score in scores:# 正例覆盖样本数量与实际正例样本量positive_recall = target_data.loc[(target_data.y_test == positive_flag) & (target_data.y_score>score),:].shape[0]positive = sum(target_data.y_test == positive_flag)# 负例覆盖样本数量与实际负例样本量negative_recall = target_data.loc[(target_data.y_test != positive_flag) & (target_data.y_score<=score),:].shape[0]negative = sum(target_data.y_test != positive_flag)Sensitivity.append(positive_recall/positive)Specificity.append(negative_recall/negative)# 构建绘图数据plot_data = pd.DataFrame({'cuts':cuts,'y1':1-np.array(Specificity),'y2':np.array(Sensitivity), 'ks':np.array(Sensitivity)-(1-np.array(Specificity))})# 寻找Sensitivity和1-Specificity之差的最大值索引max_ks_index = np.argmax(plot_data.ks)plt.plot([0]+cuts.tolist()+[1], [0]+plot_data.y1.tolist()+[1], label = '1-Specificity')plt.plot([0]+cuts.tolist()+[1], [0]+plot_data.y2.tolist()+[1], label = 'Sensitivity')# 添加参考线plt.vlines(plot_data.cuts[max_ks_index], ymin = plot_data.y1[max_ks_index], ymax = plot_data.y2[max_ks_index], linestyles = '--')# 添加文本信息plt.text(x = plot_data.cuts[max_ks_index]+0.01,y = plot_data.y1[max_ks_index]+plot_data.ks[max_ks_index]/2,s = 'KS= %.2f' %plot_data.ks[max_ks_index])# 显示图例plt.legend()# 显示图形plt.show()# 1.读取数据与训练
sports = pd.read_csv(r'D:\pythonProject\data\Run or Walk.csv')
# 提取出所有自变量名称
predictors = sports.columns[4:]
# 构建自变量矩阵
X = sports.loc[:,predictors]
# 提取y变量值
y = sports.activity
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size = 0.25, random_state = 1234)# 利用训练集建模
sklearn_logistic = linear_model.LogisticRegression()
sklearn_logistic.fit(X_train, y_train)
# 返回模型的各个参数(截距项和偏回归系数)
# print(sklearn_logistic.intercept_, sklearn_logistic.coef_)
# 模型预测
sklearn_predict = sklearn_logistic.predict(X_test)# 2.混淆矩阵
cm = metrics.confusion_matrix(y_test, sklearn_predict, labels = [0,1])
Accuracy = metrics._scorer.accuracy_score(y_test, sklearn_predict) # 模型覆盖率
Sensitivity = metrics._scorer.recall_score(y_test, sklearn_predict) # 正例覆盖率
Specificity = metrics._scorer.recall_score(y_test, sklearn_predict, pos_label=0) # 负例覆盖率# 3.ROC曲线
# y得分为模型预测正例的概率
y_score = sklearn_logistic.predict_proba(X_test)[:,1]
# 计算不同阈值下,fpr和tpr的组合值,其中fpr表示1-Specificity,tpr表示Sensitivity
fpr,tpr,threshold = metrics.roc_curve(y_test, y_score)
# 绘制面积图
plt.stackplot(fpr, tpr, color='steelblue', alpha = 0.5, edgecolor = 'black')
# 添加ROC曲线的轮廓
plt.plot(fpr, tpr, color='black', lw = 1)
# 添加对角线
plt.plot([0,1],[0,1], color = 'red', linestyle = '--')
# 显示图形
plt.show()# 4.KS曲线
# 调用自定义函数,绘制K-S曲线
plot_ks(y_test = y_test, y_score = y_score, positive_flag = 1)

这篇关于Python大数据分析——Logistic回归模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981669

相关文章

一文带你搞懂Python中__init__.py到底是什么

《一文带你搞懂Python中__init__.py到底是什么》朋友们,今天我们来聊聊Python里一个低调却至关重要的文件——__init__.py,有些人可能听说过它是“包的标志”,也有人觉得它“没... 目录先搞懂 python 模块(module)Python 包(package)是啥?那么 __in

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa

python中各种常见文件的读写操作与类型转换详细指南

《python中各种常见文件的读写操作与类型转换详细指南》这篇文章主要为大家详细介绍了python中各种常见文件(txt,xls,csv,sql,二进制文件)的读写操作与类型转换,感兴趣的小伙伴可以跟... 目录1.文件txt读写标准用法1.1写入文件1.2读取文件2. 二进制文件读取3. 大文件读取3.1

使用Python实现一个优雅的异步定时器

《使用Python实现一个优雅的异步定时器》在Python中实现定时器功能是一个常见需求,尤其是在需要周期性执行任务的场景下,本文给大家介绍了基于asyncio和threading模块,可扩展的异步定... 目录需求背景代码1. 单例事件循环的实现2. 事件循环的运行与关闭3. 定时器核心逻辑4. 启动与停

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验