数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言)

本文主要是介绍数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

1.数组和结构体相关的一些知识

1.数组

2.结构体数组

3.递归遍历数组

2.二叉树的顺序存储表示法和实现

1.定义

2.初始化

3.先序遍历二叉树

4.中序遍历二叉树

5.后序遍历二叉树

6.完整代码


前言

        二叉树的非递归的表示和实现。

1.数组和结构体相关的一些知识

1.数组

        在C语言中,可以将数组作为参数传递给函数。当数组作为参数传递时,实际上传递给函数的是数组的地址,而不是数组的副本。这意味着,在函数内部对数组进行的修改会影响到原始数组。

        例如在下面的代码中,我们把数组名作为参数传递给modifyArray函数,在函数中修改数组的值,main函数打印原来的数组,会发现原来的数组也被修改。

#include <stdio.h>
#include <stdlib.h>void modifyArray(int *s,int size){for (int i = 0; i < size; i++) {s[i] = s[i] * 10;}printf("\n");
}int main(int argc, const char *argv[]) {int arr[5] = {1,2,3,4,5};int length = sizeof(arr) / sizeof(arr[0]);printf("修改之前的数组:\n");for (int i =  0; i < length;i++) {printf("%d\t",arr[i]);}modifyArray(arr,length);printf("\n修改之前的数组:\n");for (int i =  0; i < length;i++) {printf("%d\t",arr[i]);}printf("\n");return 0;
}

        当然上述的函数我们还可以写成数组的形式。

void modifyArray(int s[],int size){for (int i = 0; i < size; i++) {s[i] = s[i] * 10;}printf("\n");
}

2.结构体数组

        在上述的代码中,我们使用数组操作基本数据类型非常的方便。当时当我们需要自定义数据类型的时候,上述的代码就不满足我们的需求了。例如我们需要表示学生数组的时候,因为每个学生都有自己的属性,姓名,年龄等等,这个时候我们就需要使用结构体数组。

        在数据结构中,我们有时候需要使用数组表示一些数据类型,因此有时候我们需要把数组声明为全局函数。代码实例如下:

#include <stdio.h>
#include <stdlib.h>// 学生结构体
typedef struct {char name[50]; // 姓名int age;       // 年龄
} Student;int main() {// 创建一个包含3个学生对象的数组并初始化Student students[3] = {{"张三", 20},{"李四", 21},{"王五", 22}};// 输出学生信息printf("学生信息如下:\n");for (int i = 0; i < 3; i++) {printf("学生姓名:%s\n", students[i].name);printf("学生年龄:%d\n", students[i].age);}return 0;
}

3.递归遍历数组

        在我们使用数组表示二叉树的时候,需要递归遍历数组,这里需要您了解数组递归的写法。

        在这个示例中以下面的代码为例,,recursivePrint 函数用于递归地遍历数组并打印数组中的元素。它接受三个参数:arr 表示数组,size 表示数组的大小,index表示当前遍历的索引位置。函数首先检查索引是否超出数组范围,如果是,则递归终止。否则,它打印当前索引处的数组元素,然后递归调用自身,传入下一个索引位置。在 main函数中,我们创建一个数组并调recursivePrint 函数来遍历打印数组元素。

#include <stdio.h>// 递归遍历数组并打印数组中的元素
void recursivePrint(int arr[], int size, int index) {// 递归终止条件:当索引超出数组范围时,结束递归if (index >= size) {return;}// 打印当前索引处的数组元素printf("%d ", arr[index]);// 递归调用,遍历下一个元素recursivePrint(arr, size, index + 1);
}int main() {int arr[] = {1, 2, 3, 4, 5};int size = sizeof(arr) / sizeof(arr[0]);printf("数组元素为:");recursivePrint(arr, size, 0);printf("\n");return 0;
}

2.二叉树的顺序存储表示法和实现

     图1.完全二叉树

               图2.普通二叉树

        我们使用一组连续的存储空间表示树的结构。按照从上到下、从左到右的顺序存储完全二叉树的的节点,对于一般二叉树上的点,我们使用0表示不存在该节点。

        对于图1来说,内存中的存储结构如下图3所示。

        图3.完全二叉树的存储结构

        如果不是二叉树,假如我们使用0表示结点不存在,图2所示的存储结构如图4所示。

图4.普通二叉树

        下面我们看看如果使用代码来实现。

1.定义

        我们使用数组实现二叉树的顺序存储

#define MAX_TREE_SIZE 100typedef char TElemType;
typedef int Status;typedef TElemType SqBiTree[MAX_TREE_SIZE];

2.初始化

        初始化时候,将数组中的元素全部设为"\0"

// 初始化二叉树
Status initSqBiTree(SqBiTree tree) {for (int i = 0; i< MAX_TREE_SIZE; i++) {tree[i] = '\0';}// 将二叉树所有元素初始化为空return 1; // 初始化成功
}

3.先序遍历二叉树

        遍历二叉树之前我们观察下根节点、左子树节点、右子树节点的规律。

        根节点的下标为a[0].左子树上的节点的下标依次为1,3,...2*i+1,右子树上的节点的下标依次为2,4,...2*i+2

// 前序遍历二叉树
void preOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 访问根节点printf("%c ", tree[node_index]);// 递归遍历左子树preOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树preOrderTraverse(tree, 2 * node_index + 2);}
}

4.中序遍历二叉树

// 中序遍历二叉树
void inOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树inOrderTraverse(tree, 2 * node_index + 1);// 访问根节点printf("%c ", tree[node_index]);// 递归遍历右子树inOrderTraverse(tree, 2 * node_index + 2);}
}

5.后序遍历二叉树

// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}

6.完整代码

#include <stdio.h>#define MAX_TREE_SIZE 100typedef char TElemType;
typedef int Status;typedef TElemType SqBiTree[MAX_TREE_SIZE];// 初始化二叉树
Status initSqBiTree(SqBiTree tree) {for (int i = 0; i< MAX_TREE_SIZE; i++) {tree[i] = '\0';}// 将二叉树所有元素初始化为空return 1; // 初始化成功
}// 前序遍历二叉树
void preOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 访问根节点printf("%c ", tree[node_index]);// 递归遍历左子树preOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树preOrderTraverse(tree, 2 * node_index + 2);}
}// 中序遍历二叉树
void inOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树inOrderTraverse(tree, 2 * node_index + 1);// 访问根节点printf("%c ", tree[node_index]);// 递归遍历右子树inOrderTraverse(tree, 2 * node_index + 2);}
}// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}int main(int argc, const char *argv[]) {SqBiTree tree;// 初始化二叉树initSqBiTree(tree);// 构造一个简单的二叉树,根节点为'A',左子树为'B',右子树为'C'tree[0] = 'A';tree[1] = 'B';tree[2] = 'C';tree[3] = 'D';tree[4] = 'E';tree[5] = '\0';tree[6] = '\0';// 输出初始化后的二叉树printf("前序遍历结果为:");preOrderTraverse(tree, 0);printf("\n");printf("中序遍历结果为:");inOrderTraverse(tree, 0);printf("\n");printf("后序遍历结果为:");postOrderTraverse(tree, 0);printf("\n");return 0;
}// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}int main(int argc, const char *argv[]) {SqBiTree tree;// 初始化二叉树initSqBiTree(tree);// 构造一个简单的二叉树,根节点为'A',左子树为'B',右子树为'C'tree[0] = 'A';tree[1] = 'B';tree[2] = 'C';tree[3] = 'D';tree[4] = 'E';tree[5] = '\0';tree[6] = '\0';// 输出初始化后的二叉树printf("前序遍历结果为:");preOrderTraverse(tree, 0);printf("\n");printf("中序遍历结果为:");inOrderTraverse(tree, 0);printf("\n");printf("后序遍历结果为:");postOrderTraverse(tree, 0);printf("\n");return 0;
}

        在main函数中,我们构建了一个图2所示的二叉树,控制台打印信息如下:

这篇关于数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979224

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

基于Python实现PDF动画翻页效果的阅读器

《基于Python实现PDF动画翻页效果的阅读器》在这篇博客中,我们将深入分析一个基于wxPython实现的PDF阅读器程序,该程序支持加载PDF文件并显示页面内容,同时支持页面切换动画效果,文中有详... 目录全部代码代码结构初始化 UI 界面加载 PDF 文件显示 PDF 页面页面切换动画运行效果总结主

SpringBoot实现基于URL和IP的访问频率限制

《SpringBoot实现基于URL和IP的访问频率限制》在现代Web应用中,接口被恶意刷新或暴力请求是一种常见的攻击手段,为了保护系统资源,需要对接口的访问频率进行限制,下面我们就来看看如何使用... 目录1. 引言2. 项目依赖3. 配置 Redis4. 创建拦截器5. 注册拦截器6. 创建控制器8.