本文主要是介绍【YOLO改进】换遍MMDET主干网络之Pyramid Vision Transformerv2(PVTv2)(基于MMYOLO),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Pyramid Vision Transformer v2(PVTv2)
Pyramid Vision Transformer v2(PVTv2)是在PVTv1的基础上进行改进的一种深度学习模型,它同样结合了Transformer架构和金字塔结构,旨在提供更强大的特征表示和更好的性能。
PVTv2的主要改进包括:
- 降低计算复杂度:通过引入线性复杂度注意层(Linear Complexity Attention Layer),PVTv2将PVTv1的计算复杂度从二次降低到线性,使得模型在处理高分辨率输入时更加高效。
- 重叠补丁嵌入:PVTv2采用了重叠补丁嵌入(Overlapping Patch Embedding)来替代PVTv1中的非重叠补丁嵌入。这种方法可以更好地保留图像的局部连续性,提高模型的性能。
- 卷积前馈网络:在PVTv2中,卷积前馈网络(Convolutional Feed-Forward Network)被用来替代PVTv1中的全连接前馈网络。这种方法可以引入卷积的局部性和层次性,进一步提高模型的性能。
通过这些改进,PVTv2在多个基本视觉任务(如分类、检测和分割)上实现了显著的性能提升,并且在参数量和计算量方面也具有更好的优化。
PVTv2作为YOLO主干网络的可行性分析
- 性能优势:PVTv2作为PVTv1的改进版本,具有更强的特征表达能力和更高的性能。将其作为YOLO的主干网络,可以使得YOLO能够更有效地提取图像中的特征信息,从而提高目标检测的精度和效率。特别是在处理多尺度目标时,PVTv2的金字塔结构和线性复杂度注意层能够提供更丰富的特征信息,进一步提高模型的性能。
- 兼容性:尽管PVTv2主要基于Transformer架构,但其金字塔结构的设计使其仍然可以与YOLO的检测头进行有效地融合。通过合理的网络结构和参数设置,可以将PVTv2作为YOLO的主干网络来使用,并形成完整的目标检测模型。
- 优化与改进:在实际应用中,可以根据具体任务需求对PVTv2进行进一步的优化和改进。例如,可以通过调整网络结构、深度、宽度等参数来平衡模型的性能和速度;也可以采用一些先进的优化技术(如剪枝、量化等)来减小模型的参数量和计算量,进一步提高模型的实时性和部署能力。
替换Pyramid Vision Transformerv2(PVTv2)(基于MMYOLO)
OpenMMLab 2.0 体系中 MMYOLO、MMDetection、MMClassification、MMSelfsup 中的模型注册表都继承自 MMEngine 中的根注册表,允许这些 OpenMMLab 开源库直接使用彼此已经实现的模块。 因此用户可以在 MMYOLO 中使用来自 MMDetection、MMClassification、MMSelfsup 的主干网络,而无需重新实现。
假设想将'Pyramid Vision Transformerv2(PVTv2)'作为 'yolov5' 的主干网络,则配置文件如下:
_base_ = './yolov5_s-v61_syncbn_8xb16-300e_coco.py'deepen_factor = _base_.deepen_factor
widen_factor = 1.0
channels = [64, 160, 256]
checkpoint_file = 'https://github.com/whai362/PVT/releases/download/v2/pvt_v2_b0.pth' #model = dict(backbone=dict(_delete_=True, # 将 _base_ 中关于 backbone 的字段删除type='mmdet.PyramidVisionTransformerV2', # 使用 mmdet 中的 PyramidVisionTransformerV2embed_dims=32,num_layers=[2, 2, 2, 2],out_indices =(1, 2, 3), #设置PyramidVisionTransformerv2输出的stage,这里设置为1,2,3,默认为(0,1,2,3)init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file)),neck=dict(type='YOLOv5PAFPN',deepen_factor=deepen_factor,widen_factor=widen_factor,in_channels=channels, # 注意:PyramidVisionTransformer 输出的3个通道是 [64, 160, 256],和原先的 yolov5-s neck 不匹配,需要更改out_channels=channels),bbox_head=dict(type='YOLOv5Head',head_module=dict(type='YOLOv5HeadModule',in_channels=channels, # head 部分输入通道也要做相应更改widen_factor=widen_factor))
)
这篇关于【YOLO改进】换遍MMDET主干网络之Pyramid Vision Transformerv2(PVTv2)(基于MMYOLO)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!