JCR一区 | Matlab实现1D-2D-GASF-CNN-GRU-MATT的多通道输入数据分类预测

本文主要是介绍JCR一区 | Matlab实现1D-2D-GASF-CNN-GRU-MATT的多通道输入数据分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

JCR一区 | Matlab实现1D-2D-GASF-CNN-GRU-MATT的多通道输入数据分类预测

目录

    • JCR一区 | Matlab实现1D-2D-GASF-CNN-GRU-MATT的多通道输入数据分类预测
      • 分类效果
      • 基本介绍
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

基本介绍

Matlab实现1D-2D-GASF-CNN-GRU-MATT的多通道输入数据分类预测;

数据准备:准备原始的序列数据,并将其转换为格拉姆矩阵的GASF矩阵表示。这将为每个时间步创建一个GASF图像。

2D卷积神经网络(CNN):将GASF矩阵作为输入,使用2D卷积神经网络来提取图像特征。CNN会在每个GASF图像上进行卷积和池化操作,以学习到图像中的空间模式和结构信息。这将生成一组一维向量作为CNN特征。

门控循环单元(GRU)和多头注意力机制:将原始鸢尾花数据输入到GRU中以捕捉时间序列的依赖关系。GRU将提取时间序列的特征向量。在这个过程中,还使用了多头注意力机制来融合多个GRU的输出。最终,一组一维向量被生成作为GRU特征。

特征融合:将CNN提取的特征向量和GRU提取的特征向量进行融合,可以使用简单的连接操作将它们合并为一个更综合的特征向量。

全连接层和Softmax分类器:将融合的特征向量输入到全连接层中,该层可以学习到特征之间的非线性关系。最后,通过Softmax分类器进行分类,将特征映射到不同的类别。

这个流程结合了GASF矩阵、CNN、GRU和多头注意力机制,以实现多通道图像时序融合的分类任务。具体的实现细节和模型架构可以根据您的需求和数据进行调整和优化。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现1D-2D-GASF-CNN-GRU-MATT的多通道输入数据分类预测
warning off 
clc;
clear 
close all
%% Set the hyper parameters for unet training
options = trainingOptions('adam', ...                 % 优化算法Adam'MaxEpochs', 1000, ...                            % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', 0.001, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod',700, ...                   % 训练100次后开始调整学习率'LearnRateDropFactor',0.01, ...                    % 学习率调整因子'L2Regularization', 0.001, ...         % 正则化参数'ExecutionEnvironment', 'cpu',...                 % 训练环境'Verbose', 1, ...                                 % 关闭优化过程'Plots', 'none');                    % 画出曲线
% % start training
t0 = tic;  %开始计时
[net,info] = trainNetwork(dsTrain, lgraph,options);
toc(t0); % 从t0开始到此处的执行时间
analyzeNetwork(net)
%% Accuracy assessmentpred = classify(net, dsTest);accuracy=sum(test_Y==pred)/length(pred);   %计算预测的确率

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

这篇关于JCR一区 | Matlab实现1D-2D-GASF-CNN-GRU-MATT的多通道输入数据分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979030

相关文章

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专