如何使用 ERNIE 千帆大模型基于 Flask 搭建智能英语能力评测对话网页机器人(详细教程)

本文主要是介绍如何使用 ERNIE 千帆大模型基于 Flask 搭建智能英语能力评测对话网页机器人(详细教程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ERNIE 千帆大模型

ERNIE-3.5是一款基于深度学习技术构建的高效语言模型,其强大的综合能力使其在中文应用方面表现出色。相较于其他模型,如微软的ChatGPT,ERNIE-3.5不仅综合能力更强,而且在训练与推理效率上也更高。这使得ERNIE-3.5能够支持更丰富的外部应用开发,为更多国内开发者提供强大基础工具。

ERNIE-3.5在语义和语境理解上有了显著提升,能够更准确地回答问题和进行交流。在与用户的聊天对话中,它表现出了更高的准确性和自然度,使得其在虚拟助手、在线客服和社交媒体等场景中具备了更出色的表现。在中文测试中,ERNIE-3.5的理解和生成能力更是超过了GPT-4,这显示了其在中文语境下的强大实力。

ERNIE-3.5支持多种NLP任务,包括文本分类、命名实体识别、语义匹配等,适用于需要文本分析和理解的场景,如情感分析、智能问答、文本摘要等。同时,它在创意写作、问答、推理、代码生成等方面也有显著的改进,展现了出色的功能和性能。

此外,ERNIE-3.5的训练速度和推理速度相较于之前的版本也有了大幅提升。据对比数据显示,其训练速度提升了2倍,推理速度提升了17倍,这将大大提高模型迭代升级效率,并大幅降低训练及使用成本。

ERNIE-3.5的推出标志着我国人工智能企业和研究机构在大模型、深度学习等关键技术方面取得了新突破,其水平已赶上世界前列。这不仅有利于人工智能产业生态的繁荣,还为人工智能在更广泛复杂场景中的应用提供了支持。例如,ERNIE-3.5可支持更加开放的外部开发,使其能够被应用于更长文本的生成、图文问答等需求,有助于推动人工智能从单一领域向综合性知识服务领域进一步拓展。

安装环境

pip install qianfan

在调用 SDK 前,需要先初始化 应用API Key(即AK) 和 应用Secret Key(即SK),支持通过参数初始化、内置函数初始化、环境变量初始化三种方式进行初始化。

配置密钥

地址:https://console.bce.baidu.com/iam/#/iam/accesslist

在这里插入图片描述
SDK 调用千帆大模型

方案一:加载环境变量 .env 配置文件

QIANFAN_ACCESS_KEY=安全认证 Access Key
QIANFAN_SECRET_KEY=安全认证 Secret Key

方案二:直接属性设置

chat_completion = qianfan.ChatCompletion(ak="API Key", sk="Secret Key")

SDK 调用接口

import qianfan
import dotenv
dotenv.load_dotenv()chat_comp = qianfan.ChatCompletion()resp = chat_comp.do(model="ERNIE-Bot-4", messages=[{"role": "user","content": "你好"
}])if resp.code == 200:print(resp.request.json_body)# print(resp.body)

resp.request.json_body 数据结构(数据类型:dict)

{  'messages': [  {'role': 'user', 'content': '你好'}  ],  'stream': False,  'extra_parameters': {  'request_source': 'qianfan_py_sdk_v0.3.7.1'  }  
}  

resp.body 数据结构(数据类型:dict)

{  'id': 'as-u2tgxkd8z4',  'object': 'chat.completion',  'created': 1712759343,  'result': '你好,有什么我可以帮助你的吗?',  'is_truncated': False,  'need_clear_history': False,  'usage': {  'prompt_tokens': 1,  'completion_tokens': 8,  'total_tokens': 9  }  
}

POST 请求调用接口

加载环境变量 .env 配置文件

CLIENT_API_KEY=应用 API KEY
CLIENT_SECRET_KEY=应用 SECRET KEY

地址:https://console.bce.baidu.com/qianfan/ais/console/applicationConsole/application

在这里插入图片描述

详细源码

import osimport requests
import json
import dotenvdotenv.load_dotenv()def get_access_token():url = f"https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id={os.environ['CLIENT_API_KEY']}&client_secret={os.environ['CLIENT_SECRET_KEY']}"payload = json.dumps("")headers = {'Content-Type': 'application/json','Accept': 'application/json'}response = requests.request("POST", url, headers=headers, data=payload)return response.json().get("access_token")def qianfan_chat_post(content):url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro?access_token=" + get_access_token()payload = json.dumps({"messages": [{"role": "user","content": content}]})headers = {'Content-Type': 'application/json'}response = requests.request("POST", url, headers=headers, data=payload)return response.json().get("result")

服务器端源码

读取数据

PROBELM_LIST = []with open('english.txt', encoding='utf-8', mode='r') as file:# 使用 for循环逐行读取文件for line in file:# 打印每一行的内容PROBELM_LIST.append(line.replace("\n", ""))

百度智能云调用

import qianfan
import dotenvdotenv.load_dotenv()chat_comp = qianfan.ChatCompletion()def qianfan_ask(content):resp = chat_comp.do(model="ERNIE-Bot-4", messages=[{"role": "user","content": content}], system="结果用纯英语返回,不带有任何中文,内容不超过100个词。")if resp.code == 200:return resp.body.get("result")print(qianfan_ask("问题;What is the past tense of the verb “to run”?, 我的回答:run。请问简要评价我的回答情况"))

配置服务器源码

from datetime import datetimefrom flask import Flask, jsonify, request, make_response
from flask_cors import CORS
from flask_pymongo import PyMongo
from read_data import PROBELM_LIST
from qianfan_api import qianfan_askapp = Flask(__name__)
CORS(app)# 配置 MongoDB 连接
app.config['MONGO_URI'] = 'mongodb://localhost:27017/hnu'
mongo = PyMongo(app)def insert_mongo_data(user: str, content: str):collection = mongo.db.message# 获取当前日期和时间now = datetime.now()# 格式化日期和时间formatted_time = now.strftime("%Y-%m-%d %H:%M:%S")collection.insert_one({'time': formatted_time, 'user': user, 'content': content})@app.route('/problem')
def ramdon_problem():index = int(request.args.get('index'))# problem = random.choice(PROBELM_LIST)# 题目循环取余操作problem = PROBELM_LIST[index % len(PROBELM_LIST)]# 记录机器人数据insert_mongo_data("机器人", problem)result = {'code': 200, 'data': problem}return jsonify(result)@app.route('/answer', methods=['POST'])
def answer_problem():data = request.get_json()problem = data.get('problem', "")answer = data.get('answer', "")# 记录使用者数据insert_mongo_data("使用者", answer)# 千帆大模型分析回答质量analysis = qianfan_ask(f"问题{problem}。我的回答:{answer}。请问简要评价我的回答情况")# 记录机器人数据insert_mongo_data("机器人", analysis)result = {'code': 200, 'data': analysis}return jsonify(result)if __name__ == '__main__':app.run(host="0.0.0.0", port=3000, debug=True)

导出 Json 数据

开启接口支持导出 json 数据

@app.route('/json', methods=['GET'])
from flask import Flask, jsonify
from flask_cors import CORS
from flask_pymongo import PyMongoimport pandas as pd
import io
from openpyxl import Workbookapp = Flask(__name__)
CORS(app)# 配置 MongoDB 连接
app.config['MONGO_URI'] = 'mongodb://localhost:27017/hnu'
mongo = PyMongo(app)@app.route('/json', methods=['GET'])
def get_data():# 查询 MongoDBdata = mongo.db.message.find()# 将 ObjectId 转换为字符串result = []for d in data:# 处理 ObjectIdd['_id'] = str(d['_id'])result.append(d)return jsonify(result)if __name__ == '__main__':app.run(host="0.0.0.0", port=3000, debug=True)

导出 Excel 数据

开启接口支持导出 excel 数据

from flask import Flask, make_response
from flask_cors import CORS
from flask_pymongo import PyMongoimport pandas as pd
import io
from openpyxl import Workbookapp = Flask(__name__)
CORS(app)# 配置 MongoDB 连接
app.config['MONGO_URI'] = 'mongodb://localhost:27017/hnu'
mongo = PyMongo(app)def generate_excel(data):# 创建一个 Excel 工作簿和工作表wb = Workbook()ws = wb.activews.title = "Data"# 将数据写入工作表for row_num, row_data in enumerate(data, 1):ws.append(row_data)# 将工作簿保存到 BytesIO 流中excel_data = io.BytesIO()wb.save(excel_data)# 重置流的位置到开头excel_data.seek(0)  # 设置 HTTP 响应头,以便浏览器知道这是一个 Excel 文件response = make_response(excel_data.read())response.headers["Content-Disposition"] = "attachment; filename=data.xlsx"response.headers["Content-Type"] = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"return response@app.route('/excel', methods=['GET'])
def get_data_excel():data = mongo.db.message.find()# 将 ObjectId 转换为字符串result = []for d in data:# 处理ObjectIdd['_id'] = str(d['_id'])result.append(d)# 将查询结果转换为 DataFramedf = pd.DataFrame(result)# 生成 Excel 文件并返回return generate_excel(df.values.tolist())if __name__ == '__main__':app.run(host="0.0.0.0", port=3000, debug=True)

前端效果预览

聊天界面效果

在这里插入图片描述

这篇关于如何使用 ERNIE 千帆大模型基于 Flask 搭建智能英语能力评测对话网页机器人(详细教程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978391

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设