【机器学习300问】82、RMSprop梯度下降优化算法的原理是什么?

2024-05-10 19:44

本文主要是介绍【机器学习300问】82、RMSprop梯度下降优化算法的原理是什么?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        RMSprop,全称Root Mean Square Propagation,中文名称“均方根传播”算法。让我来举个例子给大家介绍一下它的原理!

一、通过举例来感性认识

        建议你第一次看下面的例子时忽略小括号里的内容,在看完本文当你对RMSprop有了一定理解时再回过头来读一次这个小例子,这次带上小括号的内容一起读,相信你会有更深刻的体会。 

        想象一下你正在健身房锻炼,目标是让肌肉(我们的模型参数)变得更加强壮有效(准确预测或分类)。RMSprop就像是你的私人健身教练,它特别擅长调整你的训练计划(学习率),确保你在每次举重(梯度下降)时既不会因为负重太轻而效果甚微,也不会因为负重太重而受伤(过度调整导致震荡不收敛)。

        具体来说,当你做重量训练时,教练RMSprop会观察你每一次举重的疲劳程度(历史梯度平方的平均值),并据此动态调整你下一次应该举起的重量(学习率)。如果某次你举得很吃力(梯度较大),意味着可能需要稍微减轻重量(减小学习率),让你的肌肉可以恢复并逐步增强;反之,如果感觉轻松(梯度较小),则可以适当增加重量(增大学习率),以加速进步。

 二、通过定义来理性认识

        RMSprop是一种自适应学习率方法,用于优化梯度下降算法。主要针对梯度下降法在非凸优化问题中学习率难以选择的问题进行了改进。RMSprop的核心思想是对每个参数使用不同的学习率,这些学习率是根据参数最近梯度的大小自适应调整的。它通过引入一个衰减系数来控制历史梯度的影响,使得学习率更加适应不同参数的情况。RMSprop算法的定义如下:

        假设有一个待最小化的目标函数J(\theta),其中\theta是模型参数向量,RMSprop对每个参数\theta_i进行更新,更新规则为:

  1. 计算目标函数J关于\theta的梯度:g_t = \nabla J(\theta_t)
  2. 计算梯度平方的指数移动平均值:E[g^2]_t = \beta E[g^2]_{t-1} + (1-\beta)g_t^2
  3. 更新参数:\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} \cdot g_t
符号解释
g_t在时间步t处梯度\nabla J(\theta)的估计
E[g^2]_t梯度平方的指数加权移动平均,用于调整每个参数的学习率。类似于EWMA,它对过去梯度的平方给予一定权重的平均
\beta梯度平方的移动平均的衰减率,它是人为设定的一个较接近1的超参数,常用的值如 0.9
\eta全局学习率
\epsilon一个很小的常数(例如10^{-8}),用于数值稳定性,防止除以零

三、RMSprop梯度下降优化算法的优点

        RMSProp它的提出是为了解决Adagrad算法在长期训练过程中可能遇到的学习率逐渐减小的问题。想象一下,如果你在学习新技能时,每次犯错后都以倍增的努力去纠正,那么很快你就会感到疲惫并放弃。Adagrad就是这样,它累积了历史上所有的梯度信息,导致后期学习率变得非常小,几乎无法继续学习。而RMSProp则像是给你一个“遗忘”的功能,让你不那么严格地记住每一个错误,而是让旧的错误逐渐淡化,这样你就可以保持一个较为稳定的学习节奏。

(1)自适应学习率

        RMSprop算法能够为每个参数独立地调整学习率,使得学习过程对参数的初始学习率设置不那么敏感。

(2)加速收敛

        通过使用梯度平方的指数移动平均来调整学习率,RMSprop能够避免梯度的急剧变化,从而在训练中更稳定,通常能够加速收敛。

这篇关于【机器学习300问】82、RMSprop梯度下降优化算法的原理是什么?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977380

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传