【机器学习300问】82、RMSprop梯度下降优化算法的原理是什么?

2024-05-10 19:44

本文主要是介绍【机器学习300问】82、RMSprop梯度下降优化算法的原理是什么?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        RMSprop,全称Root Mean Square Propagation,中文名称“均方根传播”算法。让我来举个例子给大家介绍一下它的原理!

一、通过举例来感性认识

        建议你第一次看下面的例子时忽略小括号里的内容,在看完本文当你对RMSprop有了一定理解时再回过头来读一次这个小例子,这次带上小括号的内容一起读,相信你会有更深刻的体会。 

        想象一下你正在健身房锻炼,目标是让肌肉(我们的模型参数)变得更加强壮有效(准确预测或分类)。RMSprop就像是你的私人健身教练,它特别擅长调整你的训练计划(学习率),确保你在每次举重(梯度下降)时既不会因为负重太轻而效果甚微,也不会因为负重太重而受伤(过度调整导致震荡不收敛)。

        具体来说,当你做重量训练时,教练RMSprop会观察你每一次举重的疲劳程度(历史梯度平方的平均值),并据此动态调整你下一次应该举起的重量(学习率)。如果某次你举得很吃力(梯度较大),意味着可能需要稍微减轻重量(减小学习率),让你的肌肉可以恢复并逐步增强;反之,如果感觉轻松(梯度较小),则可以适当增加重量(增大学习率),以加速进步。

 二、通过定义来理性认识

        RMSprop是一种自适应学习率方法,用于优化梯度下降算法。主要针对梯度下降法在非凸优化问题中学习率难以选择的问题进行了改进。RMSprop的核心思想是对每个参数使用不同的学习率,这些学习率是根据参数最近梯度的大小自适应调整的。它通过引入一个衰减系数来控制历史梯度的影响,使得学习率更加适应不同参数的情况。RMSprop算法的定义如下:

        假设有一个待最小化的目标函数J(\theta),其中\theta是模型参数向量,RMSprop对每个参数\theta_i进行更新,更新规则为:

  1. 计算目标函数J关于\theta的梯度:g_t = \nabla J(\theta_t)
  2. 计算梯度平方的指数移动平均值:E[g^2]_t = \beta E[g^2]_{t-1} + (1-\beta)g_t^2
  3. 更新参数:\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}} \cdot g_t
符号解释
g_t在时间步t处梯度\nabla J(\theta)的估计
E[g^2]_t梯度平方的指数加权移动平均,用于调整每个参数的学习率。类似于EWMA,它对过去梯度的平方给予一定权重的平均
\beta梯度平方的移动平均的衰减率,它是人为设定的一个较接近1的超参数,常用的值如 0.9
\eta全局学习率
\epsilon一个很小的常数(例如10^{-8}),用于数值稳定性,防止除以零

三、RMSprop梯度下降优化算法的优点

        RMSProp它的提出是为了解决Adagrad算法在长期训练过程中可能遇到的学习率逐渐减小的问题。想象一下,如果你在学习新技能时,每次犯错后都以倍增的努力去纠正,那么很快你就会感到疲惫并放弃。Adagrad就是这样,它累积了历史上所有的梯度信息,导致后期学习率变得非常小,几乎无法继续学习。而RMSProp则像是给你一个“遗忘”的功能,让你不那么严格地记住每一个错误,而是让旧的错误逐渐淡化,这样你就可以保持一个较为稳定的学习节奏。

(1)自适应学习率

        RMSprop算法能够为每个参数独立地调整学习率,使得学习过程对参数的初始学习率设置不那么敏感。

(2)加速收敛

        通过使用梯度平方的指数移动平均来调整学习率,RMSprop能够避免梯度的急剧变化,从而在训练中更稳定,通常能够加速收敛。

这篇关于【机器学习300问】82、RMSprop梯度下降优化算法的原理是什么?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977380

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案