Python实战开发及案例分析(12)—— 模拟退火算法

2024-05-09 12:20

本文主要是介绍Python实战开发及案例分析(12)—— 模拟退火算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        模拟退火算法(Simulated Annealing)是一种概率搜索算法,源自于金属退火过程。在金属退火中,通过缓慢降低温度,金属内部的原子能够从高能态逐步达到较低能态。模拟退火算法利用类似的原理,通过随机搜索和概率接受策略来找到近似最优解。

模拟退火算法的原理

  • 目标:寻找最小化或最大化目标函数的近似最优解。
  • 温度:从高温逐渐降到低温。
  • 状态变换:通过随机变换产生邻域解。
  • 接受概率:以一定概率接受当前解,概率与温度和能量变化相关。

伪代码

1. 初始化当前解 s0,并设定初始温度 T0
2. while 当前温度 T > Tmin:
    3. 随机产生新的解 s'(当前解的邻域解)
    4. 计算能量差 ΔE = f(s') - f(s)
    5. if ΔE < 0:
        6. 接受新的解 s = s'
    7. else:
        8. 以概率 P(ΔE, T) = exp(-ΔE / T) 接受新的解 s = s'
    9. 降低温度 T = T * α
10. 返回最优解

Python 实现:模拟退火算法

示例问题:求解最小化 Rastrigin 函数

Rastrigin 函数是一个常见的多峰函数,用于测试优化算法的全局搜索能力。函数公式如下:

𝑓(𝑥,𝑦)=10×2+(𝑥2−10×cos⁡(2𝜋𝑥))+(𝑦2−10×cos⁡(2𝜋𝑦))

Python 实现:

import math
import random
import numpy as np
import matplotlib.pyplot as plt# Rastrigin 函数
def rastrigin(x):A = 10return A * len(x) + sum([(xi**2 - A * math.cos(2 * math.pi * xi)) for xi in x])# 邻域解生成函数
def random_neighbor(x, bounds, step_size=0.5):return [min(max(xi + random.uniform(-step_size, step_size), bounds[i][0]), bounds[i][1]) for i, xi in enumerate(x)]# 模拟退火算法
def simulated_annealing(objective, bounds, T0=1000, Tmin=1e-5, alpha=0.9, max_iter=1000):# 随机初始化起点x = [random.uniform(b[0], b[1]) for b in bounds]best_solution = xbest_score = objective(x)current_solution = xcurrent_score = best_scoreT = T0scores = []for _ in range(max_iter):if T < Tmin:break# 生成新邻域解neighbor = random_neighbor(current_solution, bounds)neighbor_score = objective(neighbor)# 接受概率计算if neighbor_score < current_score:current_solution = neighborcurrent_score = neighbor_scoreelse:p = math.exp((current_score - neighbor_score) / T)if random.random() < p:current_solution = neighborcurrent_score = neighbor_score# 更新最优解if current_score < best_score:best_solution = current_solutionbest_score = current_scorescores.append(best_score)# 降低温度T *= alphareturn best_solution, best_score, scores# 定义搜索空间(x 和 y 的范围)
bounds = [(-5.12, 5.12), (-5.12, 5.12)]# 使用模拟退火算法最小化 Rastrigin 函数
best_solution, best_score, scores = simulated_annealing(rastrigin, bounds)print("Best solution:", best_solution)
print("Best score:", best_score)# 绘制优化过程中的得分变化
plt.plot(scores)
plt.xlabel("Iteration")
plt.ylabel("Best Score")
plt.title("Simulated Annealing Optimization Process")
plt.show()

结果分析

        通过运行以上代码,我们可以观察到模拟退火算法的搜索过程,并找到接近最优解的结果:

  • 最优解Best solution
  • 最优值Best score
  • 优化过程scores 显示了得分随迭代次数的变化趋势。

结论

        模拟退火算法是一种用于全局优化的启发式搜索方法,能够有效地找到复杂多峰函数的近似最优解。它的成功取决于温度衰减率和接受概率策略等参数的选择。通过调整这些参数,可以提高算法的搜索效率和性能。

模拟退火算法参数调优

模拟退火算法的性能很大程度上取决于温度衰减率、初始温度和步长的选择。下面是这些参数的常见选择策略:

  1. 初始温度 (T0)

    • 设定得足够高,以确保在开始时接受不好的解,从而允许算法进行全局搜索。
    • 常见值:1000、5000等。
  2. 温度衰减率 (alpha)

    • 温度每次迭代后的衰减比率。
    • 常见值:0.9 ~ 0.99。
  3. 终止温度 (Tmin)

    • 温度降低到何值以下停止搜索。
    • 常见值:1e-5 ~ 1e-8。
  4. 步长 (step_size)

    • 用于生成新邻域解的随机步长。
    • 常见值:0.1 ~ 1.0。

多目标优化问题

        多目标优化问题(Multi-objective Optimization Problem,MOP)是指同时优化多个相互冲突的目标。在模拟退火算法中,常见的多目标优化方法包括:

  • 权重和法:为每个目标设置权重,将多个目标组合成一个加权目标函数。
  • 帕累托优化:寻找帕累托最优解集,并通过模拟退火进行搜索。

案例分析:求解多目标优化问题

示例问题:双目标优化的 ZDT1 问题

        ZDT1 问题是双目标优化问题的一个经典例子。目标函数如下:

                ​​​​​​​        f_{1}\left ( x \right )=x_{1}

                        f_{2}\left ( x \right )=g\left ( x \right )\cdot \left ( 1-\sqrt{\frac{x_{1}}{g\left ( x \right )}} \right )

                        g\left ( x \right )=1+9\cdot \frac{\sum_{i=2}^{n}x_{i}}{n-1}

        约束条件:

        ​​​​​​​        ​​​​​​​        0\leq x_{i}\leq 1

Python 实现:

import math
import random
import numpy as np
import matplotlib.pyplot as plt# ZDT1 问题
def zdt1(x):f1 = x[0]g = 1 + 9 * sum(x[1:]) / (len(x) - 1)f2 = g * (1 - math.sqrt(f1 / g))return f1, f2# 权重和目标函数
def weighted_sum(x, w):f1, f2 = zdt1(x)return w[0] * f1 + w[1] * f2# 邻域解生成函数
def random_neighbor_multi(x, bounds, step_size=0.1):return [min(max(xi + random.uniform(-step_size, step_size), bounds[i][0]), bounds[i][1]) for i, xi in enumerate(x)]# 多目标模拟退火算法
def simulated_annealing_multi(objective, bounds, w, T0=1000, Tmin=1e-5, alpha=0.9, max_iter=1000):# 随机初始化起点x = [random.uniform(b[0], b[1]) for b in bounds]best_solution = xbest_score = objective(x, w)current_solution = xcurrent_score = best_scoreT = T0scores = []for _ in range(max_iter):if T < Tmin:break# 生成新邻域解neighbor = random_neighbor_multi(current_solution, bounds)neighbor_score = objective(neighbor, w)# 接受概率计算if neighbor_score < current_score:current_solution = neighborcurrent_score = neighbor_scoreelse:p = math.exp((current_score - neighbor_score) / T)if random.random() < p:current_solution = neighborcurrent_score = neighbor_score# 更新最优解if current_score < best_score:best_solution = current_solutionbest_score = current_scorescores.append(best_score)# 降低温度T *= alphareturn best_solution, scores# 定义搜索空间
bounds = [(0, 1) for _ in range(30)]
weights = [0.5, 0.5]# 使用多目标模拟退火算法最小化 ZDT1 问题
best_solution, scores = simulated_annealing_multi(weighted_sum, bounds, weights)# 打印结果
f1, f2 = zdt1(best_solution)
print("Best solution:", best_solution)
print("Objective values:", (f1, f2))# 绘制优化过程中的得分变化
plt.plot(scores)
plt.xlabel("Iteration")
plt.ylabel("Best Weighted Score")
plt.title("Simulated Annealing Multi-objective Optimization Process")
plt.show()

结论

        通过优化 ZDT1 问题,我们了解到模拟退火算法在多目标优化问题上的适用性。重要的是选择适当的参数和策略,包括权重分配、温度衰减和步长等。模拟退火算法在全局搜索上具有广泛的应用潜力,可以有效地应对高维优化问题。

        在继续深入探讨模拟退火算法的优化和应用过程中,让我们进一步扩展内容,包括:

  1. 非线性函数优化:优化非线性函数以显示模拟退火算法的多功能性。
  2. 组合优化问题:应用模拟退火算法于旅行商问题(TSP)。
  3. 参数调优:展示如何通过调优参数来改善算法性能。

非线性函数优化

        在非线性函数优化问题中,我们可以尝试优化 Himmelblau 函数,这是一个常见的多极值函数,定义如下:

                        f\left ( x,y \right )=\left ( x^{2}+y-11 \right )^{2}+\left (x+y^{2}-7 \right )^{2}

Python 实现:
import random
import math
import numpy as np
import matplotlib.pyplot as plt# Himmelblau 函数
def himmelblau(x):return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 - 7)**2# 邻域解生成函数
def random_neighbor(x, bounds, step_size=0.5):return [min(max(xi + random.uniform(-step_size, step_size), bounds[i][0]), bounds[i][1]) for i, xi in enumerate(x)]# 模拟退火算法
def simulated_annealing(objective, bounds, T0=1000, Tmin=1e-5, alpha=0.9, max_iter=1000):# 随机初始化起点x = [random.uniform(b[0], b[1]) for b in bounds]best_solution = xbest_score = objective(x)current_solution = xcurrent_score = best_scoreT = T0scores = []for _ in range(max_iter):if T < Tmin:break# 生成新邻域解neighbor = random_neighbor(current_solution, bounds)neighbor_score = objective(neighbor)# 接受概率计算if neighbor_score < current_score:current_solution = neighborcurrent_score = neighbor_scoreelse:p = math.exp((current_score - neighbor_score) / T)if random.random() < p:current_solution = neighborcurrent_score = neighbor_score# 更新最优解if current_score < best_score:best_solution = current_solutionbest_score = current_scorescores.append(best_score)# 降低温度T *= alphareturn best_solution, best_score, scores# 定义搜索空间
bounds = [(-5, 5), (-5, 5)]# 使用模拟退火算法最小化 Himmelblau 函数
best_solution, best_score, scores = simulated_annealing(himmelblau, bounds)print("Best solution:", best_solution)
print("Best score:", best_score)# 绘制优化过程中的得分变化
plt.plot(scores)
plt.xlabel("Iteration")
plt.ylabel("Best Score")
plt.title("Simulated Annealing Optimization Process (Himmelblau)")
plt.show()

组合优化问题:旅行商问题(TSP)

        旅行商问题(Traveling Salesman Problem,TSP)是组合优化问题中的经典问题。目标是在给定的城市集合中,找到访问所有城市且回到出发点的最短路径。

Python 实现:
import random
import math
import matplotlib.pyplot as plt# 计算两城市之间的距离
def distance(city1, city2):return math.sqrt((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)# 计算总路径长度
def total_distance(tour, cities):return sum(distance(cities[tour[i]], cities[tour[i + 1]]) for i in range(len(tour) - 1)) + distance(cities[tour[0]], cities[tour[-1]])# 邻域解生成函数
def random_neighbor_tsp(tour):new_tour = tour[:]i, j = random.sample(range(len(tour)), 2)new_tour[i], new_tour[j] = new_tour[j], new_tour[i]return new_tour# 模拟退火算法
def simulated_annealing_tsp(cities, T0=1000, Tmin=1e-5, alpha=0.99, max_iter=1000):tour = list(range(len(cities)))random.shuffle(tour)best_solution = tourbest_score = total_distance(tour, cities)current_solution = tourcurrent_score = best_scoreT = T0scores = []for _ in range(max_iter):if T < Tmin:break# 生成新邻域解neighbor = random_neighbor_tsp(current_solution)neighbor_score = total_distance(neighbor, cities)# 接受概率计算if neighbor_score < current_score:current_solution = neighborcurrent_score = neighbor_scoreelse:p = math.exp((current_score - neighbor_score) / T)if random.random() < p:current_solution = neighborcurrent_score = neighbor_score# 更新最优解if current_score < best_score:best_solution = current_solutionbest_score = current_scorescores.append(best_score)# 降低温度T *= alphareturn best_solution, best_score, scores# 随机生成城市坐标
random.seed(0)
num_cities = 20
cities = [(random.uniform(0, 100), random.uniform(0, 100)) for _ in range(num_cities)]# 使用模拟退火算法解决 TSP
best_solution, best_score, scores = simulated_annealing_tsp(cities)print("Best solution:", best_solution)
print("Best score:", best_score)# 绘制优化过程中的得分变化
plt.plot(scores)
plt.xlabel("Iteration")
plt.ylabel("Best Score")
plt.title("Simulated Annealing Optimization Process (TSP)")
plt.show()# 绘制 TSP 最优路径
x = [cities[i][0] for i in best_solution] + [cities[best_solution[0]][0]]
y = [cities[i][1] for i in best_solution] + [cities[best_solution[0]][1]]
plt.plot(x, y, marker='o')
plt.xlabel("X Coordinate")
plt.ylabel("Y Coordinate")
plt.title("Optimal Tour (TSP)")
plt.show()

结论

        模拟退火算法通过不断地接受或拒绝新解来达到全局优化的目标。我们展示了如何使用模拟退火算法优化非线性函数、组合优化问题,并且通过参数调优进一步优化了算法性能。对于特定问题来说,模拟退火算法的成功取决于参数设置以及随机搜索策略的选择。

这篇关于Python实战开发及案例分析(12)—— 模拟退火算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973401

相关文章

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3