用调整法和插入法建堆的Python实现,不同建堆方式对堆排序性能的影响

本文主要是介绍用调整法和插入法建堆的Python实现,不同建堆方式对堆排序性能的影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       建堆的方式大体有两种,一种是插入法,一种是调整法,其中以调整法比较常见。由于他们的建堆的思路不同,所以两种方法建堆结果可能不一样。

       插入法建堆是将数组1中的元素逐个插入到数组2中建立一个堆。以小根堆为例,每插入一个关键字就与其父节点的关键字比较大小,如果父节点的关键字较大则交换,然后依次自底地向上调整使之符合小根堆的特性。在某棵已插入根节点的子树中,当插入左节点时,左节点与根节点交换,插入右节点时,右节点与根节点交换,那么这种情况下这颗子树三个节点的位置都发生改变了。因此插入法建堆结果与插入的顺序和值大小有关。

       调整法建堆是自底向上依次调整,一棵子树中最小的节点值与根节点交换,最大的那个节点位置在本次调整中不作改变。即这种方法建堆有一个节点位置不变。

        下面是插入法和调整法建堆的Python代码:

import random
import datetime#make random file
def creatIntRandom():count = 100output = open('data_100.txt','w+')while count:output.write(str(random.randint(0,1000001)) + '\n')count = count - 1output.closedef txtToList():int_list = []in_file = open('data.txt')in_text = in_file.readlines()   for line in in_text:num = int(line[0 : len(line) - 1])int_list.append(num) in_file.close()return int_list#----------------------------------
def minHeapify(list, heapsize, index):left = 2*index + 1right = 2*index + 2mini = indexif left < heapsize:if list[mini] > list[left]:mini = leftif right < heapsize and list[mini] > list[right]:mini = rightif mini != index:list[mini], list[index] = list[index], list[mini]minHeapify(list, heapsize, mini)def buildMinHeap_1(list):heapSize = len(list)if heapSize < 2:returnfor i in range(heapSize/2 - 1, -1, -1):minHeapify(list, heapSize, i)def heapSort_1(list):buildMinHeap_1(list)for i in range(len(list) - 1, -1, -1):list[0], list[i] = list[i], list[0]minHeapify(list, i, 0)return list    #-------------------------------------------
def buildMinHeap_2(list_1):heapsize = 0list_2 = [0]*(len(list_1) + 1)for i in range(len(list_1)):heapsize = i + 1list_2[heapsize] = list_1[i]while heapsize > 2 and list_2[heapsize/2] > list_2[heapsize]:list_2[heapsize], list_2[heapsize/2] = list_2[heapsize/2], list_2[heapsize]heapsize/=2return list_2[1:len(list_2)]def heapSort_2(list):list_2 = buildMinHeap_2(list)for i in range(len(list)-1, -1, -1):list_2[0], list_2[i] = list_2[i], list_2[0]minHeapify(list_2, i, 0)return list_2#------------------------------------------
def verify(list):for i in range(len(list) - 1):if list[i] >= list[i+1]:passelse:return Falsereturn Truedef test():list_in = txtToList()time_start_1 = datetime.datetime.now()list_out_1 = heapSort_1(list_in)time_end_1 = datetime.datetime.now()#print list_out_1print verify(list_out_1)print (time_end_1 - time_start_1)time_start_2 = datetime.datetime.now()list_out_2 = heapSort_2(list_in)time_end_2 = datetime.datetime.now()#print list_out_2print verify(list_out_1)print (time_end_2 - time_start_2)#creatIntRandom()
test()


        下图是对100W个随机产生的整数进行堆排序的运行结果:

    

 


        调整法的时间复杂度:建堆耗时0.5NlogN,排序耗时NlogN,累计1.5NlogN。
        插入法的时间复杂度:建堆耗时NlogN,排序耗时NlogN,累计2NlogN。
        从以上的比较中可以看出,虽然两种方法的时间复杂度在数量级是一样的,但是由于建堆所耗费的时间不同,总体时间有所不同,从上图执行的结果可以看出来:上面是调整法建堆并排序所耗时间,下面是插入法建堆并排序所耗时间。基本符合上述分析。




这篇关于用调整法和插入法建堆的Python实现,不同建堆方式对堆排序性能的影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/971155

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾