本文主要是介绍用调整法和插入法建堆的Python实现,不同建堆方式对堆排序性能的影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
建堆的方式大体有两种,一种是插入法,一种是调整法,其中以调整法比较常见。由于他们的建堆的思路不同,所以两种方法建堆结果可能不一样。
插入法建堆是将数组1中的元素逐个插入到数组2中建立一个堆。以小根堆为例,每插入一个关键字就与其父节点的关键字比较大小,如果父节点的关键字较大则交换,然后依次自底地向上调整使之符合小根堆的特性。在某棵已插入根节点的子树中,当插入左节点时,左节点与根节点交换,插入右节点时,右节点与根节点交换,那么这种情况下这颗子树三个节点的位置都发生改变了。因此插入法建堆结果与插入的顺序和值大小有关。
调整法建堆是自底向上依次调整,一棵子树中最小的节点值与根节点交换,最大的那个节点位置在本次调整中不作改变。即这种方法建堆有一个节点位置不变。
下面是插入法和调整法建堆的Python代码:
import random
import datetime#make random file
def creatIntRandom():count = 100output = open('data_100.txt','w+')while count:output.write(str(random.randint(0,1000001)) + '\n')count = count - 1output.closedef txtToList():int_list = []in_file = open('data.txt')in_text = in_file.readlines() for line in in_text:num = int(line[0 : len(line) - 1])int_list.append(num) in_file.close()return int_list#----------------------------------
def minHeapify(list, heapsize, index):left = 2*index + 1right = 2*index + 2mini = indexif left < heapsize:if list[mini] > list[left]:mini = leftif right < heapsize and list[mini] > list[right]:mini = rightif mini != index:list[mini], list[index] = list[index], list[mini]minHeapify(list, heapsize, mini)def buildMinHeap_1(list):heapSize = len(list)if heapSize < 2:returnfor i in range(heapSize/2 - 1, -1, -1):minHeapify(list, heapSize, i)def heapSort_1(list):buildMinHeap_1(list)for i in range(len(list) - 1, -1, -1):list[0], list[i] = list[i], list[0]minHeapify(list, i, 0)return list #-------------------------------------------
def buildMinHeap_2(list_1):heapsize = 0list_2 = [0]*(len(list_1) + 1)for i in range(len(list_1)):heapsize = i + 1list_2[heapsize] = list_1[i]while heapsize > 2 and list_2[heapsize/2] > list_2[heapsize]:list_2[heapsize], list_2[heapsize/2] = list_2[heapsize/2], list_2[heapsize]heapsize/=2return list_2[1:len(list_2)]def heapSort_2(list):list_2 = buildMinHeap_2(list)for i in range(len(list)-1, -1, -1):list_2[0], list_2[i] = list_2[i], list_2[0]minHeapify(list_2, i, 0)return list_2#------------------------------------------
def verify(list):for i in range(len(list) - 1):if list[i] >= list[i+1]:passelse:return Falsereturn Truedef test():list_in = txtToList()time_start_1 = datetime.datetime.now()list_out_1 = heapSort_1(list_in)time_end_1 = datetime.datetime.now()#print list_out_1print verify(list_out_1)print (time_end_1 - time_start_1)time_start_2 = datetime.datetime.now()list_out_2 = heapSort_2(list_in)time_end_2 = datetime.datetime.now()#print list_out_2print verify(list_out_1)print (time_end_2 - time_start_2)#creatIntRandom()
test()
下图是对100W个随机产生的整数进行堆排序的运行结果:
调整法的时间复杂度:建堆耗时0.5NlogN,排序耗时NlogN,累计1.5NlogN。
插入法的时间复杂度:建堆耗时NlogN,排序耗时NlogN,累计2NlogN。
从以上的比较中可以看出,虽然两种方法的时间复杂度在数量级是一样的,但是由于建堆所耗费的时间不同,总体时间有所不同,从上图执行的结果可以看出来:上面是调整法建堆并排序所耗时间,下面是插入法建堆并排序所耗时间。基本符合上述分析。
这篇关于用调整法和插入法建堆的Python实现,不同建堆方式对堆排序性能的影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!