Logit Standardization in Knowledge Distillation 知识蒸馏中的logit标准化

本文主要是介绍Logit Standardization in Knowledge Distillation 知识蒸馏中的logit标准化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

知识蒸馏涉及使用基于共享温度的softmax函数将软标签从教师转移到学生。然而,教师和学生之间共享温度的假设意味着他们的logits在logit范围和方差方面必须精确匹配。这种副作用限制了学生的表现,考虑到他们之间的能力差异,以及教师天生的logit关系足以让学生学习。为了解决这个问题,我们建议将温度设置为logit的加权标准差,并在应用softmax和KL散度之前进行logit标准化的即插即用Z-score预处理我们的预处理使学生可以关注教师的基本Logit关系,而不是要求大小匹配,并且可以提高现有基于logit的蒸馏方法的性能。我们还展示了一个典型的例子,其中教师和学生之间的传统共享温度设置不能可靠地产生真实的蒸馏评估;然而,我们的Z-score成功地缓解了这一挑战。

介绍

Hinton等人首先提出通过最小化他们预测之间的KL散度,将教师的知识提炼给学生。这里softmax函数的缩放因子,称为温度T,它的引入是为了软化预测概率。传统上,温度是预先全局设置的超参数,并在整个训练过程中保持固定。CTKD采用对抗学习模块来预测样本温度,以适应不同的样本难度。然而,现有的基于logit的KD方法仍然假设教师和学生应该共享温度,忽略了KL散度中不同温度值的可能性。在这项工作中,我们证明了分类和KD中的一般softmax表达式是从信息论中的熵最大化原理推导出来的。在这个推导过程中,拉格朗日乘数出现,并以温度的形式出现,在此基础上,我们建立了教师和学生的温度之间的不相关性,以及不同样本的温度之间的不相关性。这个证明支持我们在教师和学生之间以及在样本之间分配不同温度的动机。

对比logit预测的精确匹配,发现预测的类间关系足以使学生达到与教师相似的成绩。一个轻量级的学生在预测具有可比范围和方差的对数时面临着与一个笨重的教师相比的挑战。然而,我们证明在KL散度中共享温度的传统做法仍然隐含地强制学生和教师logit之间的精确匹配。现有的基于logit的KD方法没有意识到这个问题,通常会陷入陷阱,导致整体性能下降。为了解决这个问题,我们建议**使用加权logit标准偏差作为自适应温度,并在应用softmax之前将Z-score logit标准化作为预处理步骤。**这种预处理将logit的任意范围映射到有界范围,允许学生logit具有任意范围和方差,同时有效地学习和保留教师logit的固有关系。我们提出了一个典型的案例,其中在softmax中共享温度设置下的KL散度损失可能会产生误导,并且不能可靠地衡量蒸馏学生的表现。相比之下,使用我们的Z-score预处理,在这种情况下消除了共享温度的问题。

贡献

(1)基于信息论中的熵最大化原理,利用拉格朗日乘子导出了基于logit的KD中softmax的一般表达式。我们表明,温度来自于衍生的乘数,允许它被不同的样本和不同的学生和老师选择。

(2)为了解决由共享温度引起的传统基于logit的KD管道的问题,包括隐式强制logit匹配和学生模型不真实的索引。我们提出了一种logit蒸馏的预处理,以自适应地在教师和学生之间以及跨样本分配温度,能够促进现有的基于logit的KD方法。

Background and Notation

我们拥有一个转移数据集D包含所有N样本image-20240507151657662,这里image-20240507151730809分别是第n个样本的图片和标签。H,W,K是图片的高度、宽度和类的数量。给定一个输入image-20240507151933686,教师image-20240507151945859和学生image-20240507151952195分别预测logit向量image-20240507152002696image-20240507152011985。即image-20240507152019110

人们普遍接受的是,使用涉及温度T的softmax函数将logit转换为概率向量image-20240507152154423,使它们的第k项具有:

image-20240507152204210

其中image-20240507152239585,分别是image-20240507152250262的第k项。知识蒸馏的过程本质上是让image-20240507152416325模拟image-20240507152425611对任何类和所有样本。目标是通过最小化KL散度来实现的。

image-20240507152440476

当只对z进行优化时,理论上等于交叉熵损失:

image-20240507152522114

注意,它们在经验上是不等价的,因为它们的梯度由于image-20240507152617000的负熵项而发散。

方法

温度之间的不相关性

在第4.1.1和4.1.2中,我们首先基于信息论中的熵最大化原理推导了分类和KD中涉及温度的softmax函数。这意味着学生和教师的温度可以是不同的,并且样本明智地不同。

分类中的Softmax推导

可以证明分类中的softmax函数在概率归一化条件下和信息论中状态期望的约束是熵最大的唯一解。该推导在置信度校准中也被利用来制定温度标度。假设我们有如下约束熵最大化优化:

image-20240507155308232

第一个约束由于对离散概率密度的要求而成立,第二个约束控制了分布的范围,使模型能够准确地预测目标类。设image-20240507155449205为one-hot硬概率分布,其值除目标指标image-20240507155528753外均为0。第二个约束实际上是image-20240507155804958。这相当于使模型预测正确的标签image-20240507160059345。应用拉格朗日乘子image-20240507160111846,得到:

image-20240507160121908

image-20240507160214783image-20240507160222457求偏导,得到约束条件。相反,对image-20240507160239395求导得到:

image-20240507160253772

通过使导数为0得到解:

image-20240507160407249

image-20240507160505724是配分函数满足归一化条件。

KD中的softmax推导

根据这一思想,我们定义了一个熵最大化问题来表示KD中的soft最大值。给定一个训练有素的教师及其预测,我们有预测学生的目标函数如下:

image-20240507161000045

通过应用拉格朗日乘子image-20240507161214545

image-20240507161228095

image-20240507161254195求导得到

image-20240507161307807

假设image-20240507161347570为简单起见,它给出:

image-20240507161353795

其中image-20240507161503360由于概率密度的归一化条件成立。式8中的公式与式6结构相同。

不同的温度

image-20240507161628174image-20240507161640750的偏导数分别指向Eq.4中的两个约束,并且约束与image-20240507161712300无关。类似的情况也适用于式7.因此,不能给出它们的显示表达式,因此可以手动定义它们的值。如果设image-20240507161927965,则式6和式8转化为涉及学生和教师共同温度的KD表达式。

当时image-20240507162100452,公式恢复到分类中常用的传统softmax函数。最终,我们可以选择image-20240507162113229,这表明教师和学生可以有不同的温度。

明智的选取不同的温度

通常为所有样本定义一个全局温度。即对于任意image-20240507162707036被定义为恒定值。相反,由于缺乏对它们的限制,它们可能在不同的样本中有所不同。选择一个全局常数作为温度缺乏依据。因此,允许采用按样本变化的温度。

共用温度的缺点

在本节中,我们展示了传统KD管道中共享温度设置的两个缺点。我们首先通过引入两个超参数image-20240507170612183,将公式8中的softmax用一般公式重写:

image-20240507170620576

其中image-20240507170816202可以消去并且不违反等式。当image-20240507170826208时,会得到公式8中的特殊情况。通过引入image-20240507170838890,可以得到教师情况下的类似方程。

对于一个最终得到的很好的蒸馏学生,我们假设KL散度损失达到最小,并且预测教师的密度匹配能力,即image-20240507171206813image-20240507171221108。那么对于任意一对指标image-20240507171253261,很容易得到:

image-20240507171301785

通过对j从1到K求和,我们得到:

image-20240507171334735

其中,image-20240507171444024分别为学生和教师logit向量的均值,即image-20240507171458324,(image-20240507171559852类似)通过等式9对i从1到K的平方求和,我们可以得到:

image-20240507171530337

是输入向量标准差的函数。从公式9到10中,我们可以描述一个受过良好训练的学生在loigt移位和方差匹配方面的两个属性。

Logit shift

由式(9)可知,在传统的共享温度(image-20240507184055995)设置下,学生和教师在任意指标上的对数之间存在恒定的位移,即:

image-20240507184111202

其中,可以image-20240507184143849认为是第n个样本的常数。这意味着在传统的KD方法中,学生被迫严格模仿教师转移的logit。考虑到模型大小和容量的差距,学生可能无法像老师那样产生广泛的logit范围。相比之下,当学生的Logit排名与教师匹配时,即给定对教师Logit进行排序的指标image-20240507190621657,使得image-20240507190640718,则image-20240507190827483成立。logit关系是使学生和教师一样善于预测基本知识。因此,这种logit变化是基于传统KD管道的副作用,并且会迫使学生产生不必要的困难结果。

方差匹配

从公式10中,我们得出结论,学生和教师的温度之比等于他们的预测对数的标准差之比,即:

image-20240507191653843

在vanillaKD的温度共享设置中,学生被迫预测logit,使image-20240507191748255。这是另一个限制学生预测对数标准差的。相反,由于超参数来自拉格朗日乘法器,并且可以灵活调整,我们可以定义image-20240507191905707image-20240507191915221image-20240507191922908。这样,公式12中的等式总是成立的。

Logits标准化

因此,为了打破这两个束缚,我们建议将超参数分别设置为其对数的均值和加权标准差,即:

image-20240507192120528

其中,Z为算法中的Z-score函数。教师logit的情况与此类似,略去。在教师模型和学生模型中引入并共享一个基础温度T。Z-score标准化至少有4个有利的性质,即0均值、有限标准差、单调性和有界性。

0均值

标准化向量的均值很容易被证明为0.在以前的工作中,假设平均值为0,并且通常在经验上违反。相反,Z-score函数本质上保证平均值为0。

有限标准差

加权Z-score输出的标准差image-20240507194436409可以表示为1/T。这个性质使标准化的学生和教师logit对数映射到一个相同的高斯分布,平均值为0,标准差确定。表转化的映射是多对一的,这意味着它的反向是不确定的。因此,原始学生logit向量image-20240507194657883的方差和取值范围不受限制。

单调性

很容易证明Z-score是一个线性变换函数,因此这是单调函数。这种属性确保转换后的学生logit与原始logit保持相同的排名。因此,教师logit中必要的内在关系得以保留并转移给学生。

有界性

标准化的对数可以在image-20240507195418886范围内表示。与传统KD相比,可以控制logit范围,避免指数值过大。为此,我们定义了一个基本温度来控制范围。

所提出的logit标准化预处理伪代码在算法2中给出。

Toy Case

图2展示了一个典型的案例,其中传统的基于logit的共享温度KD设置可能会导致对学生成绩的不真实评估。第一个学生image-20240508125848616预测的对数在量级上更接近教师T,而第二个学生image-20240508125924127保留了与老师相同的固有对数关系。因此,的KL散度损失较低,为0.1749,明显优于第二位学生image-20240508131753331。然而,image-20240508132953676对“Bird”的预测是错误的,而image-20240508133002014对”dog“的预测是正确的,这与损失对比是矛盾的。通过应用我们的Z分数,所有logit都被重新缩放,并且在评估中强调logit之间的关系而不是它们的大小。即image-20240508133219265的损失为0,远好于image-20240508133227541的0.0995,这与预测到的预测是一致的。
在这里插入图片描述

这篇关于Logit Standardization in Knowledge Distillation 知识蒸馏中的logit标准化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970831

相关文章

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

【Python知识宝库】上下文管理器与with语句:资源管理的优雅方式

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 文章目录 前言一、什么是上下文管理器?二、上下文管理器的实现三、使用内置上下文管理器四、使用`contextlib`模块五、总结 前言 在Python编程中,资源管理是一个重要的主题,尤其是在处理文件、网络连接和数据库

dr 航迹推算 知识介绍

DR(Dead Reckoning)航迹推算是一种在航海、航空、车辆导航等领域中广泛使用的技术,用于估算物体的位置。DR航迹推算主要通过已知的初始位置和运动参数(如速度、方向)来预测物体的当前位置。以下是 DR 航迹推算的详细知识介绍: 1. 基本概念 Dead Reckoning(DR): 定义:通过利用已知的当前位置、速度、方向和时间间隔,计算物体在下一时刻的位置。应用:用于导航和定位,

【H2O2|全栈】Markdown | Md 笔记到底如何使用?【前端 · HTML前置知识】

Markdown的一些杂谈 目录 Markdown的一些杂谈 前言 准备工作 认识.Md文件 为什么使用Md? 怎么使用Md? ​编辑 怎么看别人给我的Md文件? Md文件命令 切换模式 粗体、倾斜、下划线、删除线和荧光标记 分级标题 水平线 引用 无序和有序列表 ​编辑 任务清单 插入链接和图片 内嵌代码和代码块 表格 公式 其他 源代码 预

图神经网络(2)预备知识

1. 图的基本概念         对于接触过数据结构和算法的读者来说,图并不是一个陌生的概念。一个图由一些顶点也称为节点和连接这些顶点的边组成。给定一个图G=(V,E),  其 中V={V1,V2,…,Vn}  是一个具有 n 个顶点的集合。 1.1邻接矩阵         我们用邻接矩阵A∈Rn×n表示顶点之间的连接关系。 如果顶点 vi和vj之间有连接,就表示(vi,vj)  组成了

JAVA初级掌握的J2SE知识(二)和Java核心的API

/** 这篇文章送给所有学习java的同学,请大家检验一下自己,不要自满,你们正在学习java的路上,你们要加油,蜕变是个痛苦的过程,忍受过后,才会蜕变! */ Java的核心API是非常庞大的,这给开发者来说带来了很大的方便,经常人有评论,java让程序员变傻。 但是一些内容我认为是必须掌握的,否则不可以熟练运用java,也不会使用就很难办了。 1、java.lang包下的80%以上的类

JAVA初级掌握的J2SE知识(一)

时常看到一些人说掌握了Java,但是让他们用Java做一个实际的项目可能又困难重重,在这里,笔者根据自己的一点理解斗胆提出自己的一些对掌握Java这个说法的标准,当然对于新手,也可以提供一个需要学习哪些内容的参考。另外这个标准仅限于J2SE部分,J2EE部分的内容有时间再另说。 1、语法:必须比较熟悉,在写代码的时候IDE的编辑器对某一行报错应该能够根据报错信息知道是什么样的语法错误并且知道

Java预备知识 - day2

1.IDEA的简单使用与介绍 1.1 IDEA的项目工程介绍 Day2_0904:项目名称 E:\0_code\Day2_0904:表示当前项目所在路径 .idea:idea软件自动生成的文件夹,最好不要动 src:src==sourse→源,我们的源代码就放在这个文件夹之内 Day2_0904.iml:也是自动生成的文件,不要动 External Libraries:外部库 我这