AI大模型探索之路-训练篇17:大语言模型预训练-微调技术之QLoRA

2024-05-08 10:28

本文主要是介绍AI大模型探索之路-训练篇17:大语言模型预训练-微调技术之QLoRA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列篇章💥

AI大模型探索之路-训练篇1:大语言模型微调基础认知
AI大模型探索之路-训练篇2:大语言模型预训练基础认知
AI大模型探索之路-训练篇3:大语言模型全景解读
AI大模型探索之路-训练篇4:大语言模型训练数据集概览
AI大模型探索之路-训练篇5:大语言模型预训练数据准备-词元化
AI大模型探索之路-训练篇6:大语言模型预训练数据准备-预处理
AI大模型探索之路-训练篇7:大语言模型Transformer库之HuggingFace介绍
AI大模型探索之路-训练篇8:大语言模型Transformer库-预训练流程编码体验
AI大模型探索之路-训练篇9:大语言模型Transformer库-Pipeline组件实践
AI大模型探索之路-训练篇10:大语言模型Transformer库-Tokenizer组件实践
AI大模型探索之路-训练篇11:大语言模型Transformer库-Model组件实践
AI大模型探索之路-训练篇12:语言模型Transformer库-Datasets组件实践
AI大模型探索之路-训练篇13:大语言模型Transformer库-Evaluate组件实践
AI大模型探索之路-训练篇14:大语言模型Transformer库-Trainer组件实践
AI大模型探索之路-训练篇15:大语言模型预训练之全量参数微调
AI大模型探索之路-训练篇16:大语言模型预训练-微调技术之LoRA


目录

  • 系列篇章💥
  • 前言
  • 一、QLoRA 总体概述
  • 二、QLoRA原理解释(4-bit NormalFloat)
  • 三、QLoRA代码实践
    • 学术资源加速
    • 步骤1 导入相关包
    • 步骤2 加载数据集
    • 步骤3 数据集预处理
      • 1)获取分词器
      • 2)定义数据处理函数
      • 3)对数据进行预处理
    • 步骤4 创建模型
      • 1、PEFT 步骤1 配置文件
      • 2、PEFT 步骤2 创建模型
    • 步骤5 配置训练参数
    • 步骤6 创建训练器
    • 步骤7 模型训练
    • 步骤8 模型推理
  • 总结


前言

在深度学习的不断进步中,大型语言模型(LLMs)的预训练和微调技术成为了研究的热点。其中,量化技术以其在模型压缩和加速方面的潜力备受关注。本文将深入探讨QLoRA(Quantized Low-Rank Adaptation)技术的原理、实践及应用。

一、QLoRA 总体概述

QLoRA技术是一种创新的量化LoRA(Low-Rank Adaptation)的技术,旨在保持模型性能的同时,显著减少模型的内存占用。该技术的核心包括:
1)4bit NormalFloat(NF4): 这是针对正态分布权重设计的一种信息理论上最优的数据类型。相较于传统的4-bit整数和4-bit浮点数,NF4为正态分布数据提供了更优异的实证性能。
2)双量化:QLoRA采用一种独特的双重量化机制,对初次量化后的常量进行二次量化,进一步压缩存储空间。
3)分页优化器:使用NVIDIA统一内存特性,该特性可以在在GPU偶尔OOM的情况下,进行CPU和GPU之间自动分页到分页的传输,以实现无错误的 GPU 处理。该功能的工作方式类似于 CPU 内存和磁盘之间的常规内存分页。使用此功能为优化器状态(Optimizer)分配分页内存, 然后在 GPU 内存不足时将其自动卸载到 CPU 内存,并在优化器更新步骤需要时将其加载回 GPU 内存。
在这里插入图片描述

二、QLoRA原理解释(4-bit NormalFloat)

前面篇章中我们有介绍,通常为了减少GPU的使用,我们会对模型进行量化处理,减少资源的使用;int8、int4量化是一种有效的模型压缩技术,它通过减少数值的精度来换取计算效率的提升,同时尽量保持模型的准确性。
在这里插入图片描述

1)常规int8量化和反量化过程:
在这里插入图片描述

2)常规int4量化和反量化过程:
在这里插入图片描述

3)QLoRA的NF4量化
是一种特殊的4位浮点数(Normal Float 4-bit)量化方法。它不仅定义了一种新的数据类型,还采用了基于分块的分位数量化策略,这种方法能够更有效地保持数值的相对关系,并且减少了由于量化引入的误差。QLoRA的NF4量化通过双重量化进一步减小了缓存占用,并且结合低秩适配器(LoRA)进行模型微调,可以在有限的计算资源下达到较高的性能水平。
在这里插入图片描述

三、QLoRA代码实践

学术资源加速

方便从huggingface下载模型,这云平台autodl提供的,仅适用于autodl。

import subprocess
import osresult = subprocess.run('bash -c "source /etc/network_turbo && env | grep proxy"', shell=True, capture_output=True, text=True)
output = result.stdout
for line in output.splitlines():if '=' in line:var, value = line.split('=', 1)os.environ[var] = value

步骤1 导入相关包

开始之前,我们需要导入适用于模型训练和推理的必要库,如transformers。

from datasets import Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer

步骤2 加载数据集

使用适当的数据加载器,例如datasets库,来加载预处理过的指令遵循性任务数据集。

ds = Dataset.load_from_disk("/root/tuning/lesson01/data/alpaca_data_zh/")
ds

输出:

Dataset({features: ['output', 'input', 'instruction'],num_rows: 26858
})
ds[:1]

输出

{'output': ['以下是保持健康的三个提示:\n\n1. 保持身体活动。每天做适当的身体运动,如散步、跑步或游泳,能促进心血管健康,增强肌肉力量,并有助于减少体重。\n\n2. 均衡饮食。每天食用新鲜的蔬菜、水果、全谷物和脂肪含量低的蛋白质食物,避免高糖、高脂肪和加工食品,以保持健康的饮食习惯。\n\n3. 睡眠充足。睡眠对人体健康至关重要,成年人每天应保证 7-8 小时的睡眠。良好的睡眠有助于减轻压力,促进身体恢复,并提高注意力和记忆力。'],'input': [''],'instruction': ['保持健康的三个提示。']}

步骤3 数据集预处理

利用预训练模型的分词器(Tokenizer)对原始文本进行编码,并生成相应的输入ID、注意力掩码和标签。

1)获取分词器

tokenizer = AutoTokenizer.from_pretrained("Langboat/bloom-1b4-zh")
tokenizer

输出:

BloomTokenizerFast(name_or_path='Langboat/bloom-1b4-zh', vocab_size=46145, model_max_length=1000000000000000019884624838656, is_fast=True, padding_side='left', truncation_side='right', special_tokens={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'}, clean_up_tokenization_spaces=False)

2)定义数据处理函数

def process_func(example):# 设置最大长度为256MAX_LENGTH = 256# 初始化输入ID、注意力掩码和标签列表input_ids, attention_mask, labels = [], [], []# 对指令和输入进行编码instruction = tokenizer("\n".join(["Human: " + example["instruction"], example["input"]]).strip() + "\n\nAssistant: ")# 对输出进行编码,并添加结束符response = tokenizer(example["output"] + tokenizer.eos_token)# 将指令和响应的输入ID拼接起来input_ids = instruction["input_ids"] + response["input_ids"]# 将指令和响应的注意力掩码拼接起来attention_mask = instruction["attention_mask"] + response["attention_mask"]# 将指令的标签设置为-100,表示不计算损失;将响应的输入ID作为标签labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]# 如果输入ID的长度超过最大长度,截断输入ID、注意力掩码和标签if len(input_ids) > MAX_LENGTH:input_ids = input_ids[:MAX_LENGTH]attention_mask = attention_mask[:MAX_LENGTH]labels = labels[:MAX_LENGTH]# 返回处理后的数据return {"input_ids": input_ids,"attention_mask": attention_mask,"labels": labels}

3)对数据进行预处理

tokenized_ds = ds.map(process_func, remove_columns=ds.column_names)
tokenized_ds

输出:

Dataset({features: ['input_ids', 'attention_mask', 'labels'],num_rows: 26858
})

步骤4 创建模型

然后,我们实例化一个预训练模型,这个模型将作为微调的基础。对于大型模型,我们可能还需要进行一些特定的配置,以适应可用的计算资源。(在实例化时,指定量化参数

import torch
##修改
# low_cpu_mem_usage=True: 这个参数设定为True意味着在模型加载时会尽可能地减少CPU内存的使用。
# torch_dtype=torch.half: 这个参数设置了模型中张量的数据类型为半精度浮点数,这可以减少内存占用和计算时间,但可能会牺牲一些精度。
# device_map="auto": 这个参数设置了模型应该在哪个设备上运行。“auto”意味着它将自动选择可用的设备,优先选择GPU,如果没有GPU则选择CPU。
# load_in_4bit=True: 这个参数设置为True意味着在模型加载时将使用4位量化,这可以进一步减少内存占用。
# bnb_4bit_compute_dtype=torch.half: 这个参数设置了在4位量化时的计算数据类型,这里设置为半精度浮点数。
# bnb_4bit_quant_type="nf4": 这个参数设置了4位量化的类型,"nf4"是一种特定的量化策略。
# bnb_4bit_use_double_quant=True: 这个参数设置为True意味着在4位量化时使用双重量化。
model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh",torch_dtype=torch.half,low_cpu_mem_usage=True, device_map="auto", load_in_4bit=True,bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True)
model.dtype

torch.float16

查看参数,查看模型有哪些层,可以用于添加LoRA旁路

for name, parameter in model.named_parameters():print(name,parameter.dtype)

输出

transformer.word_embeddings.weight torch.float16
transformer.word_embeddings_layernorm.weight torch.float16
transformer.word_embeddings_layernorm.bias torch.float16
transformer.h.0.input_layernorm.weight torch.float16
transformer.h.0.input_layernorm.bias torch.float16
transformer.h.0.self_attention.query_key_value.weight torch.uint8
transformer.h.0.self_attention.query_key_value.bias torch.float16
transformer.h.0.self_attention.dense.weight torch.uint8
transformer.h.0.self_attention.dense.bias torch.float16
transformer.h.0.post_attention_layernorm.weight torch.float16
transformer.h.0.post_attention_layernorm.bias torch.float16
transformer.h.0.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.0.mlp.dense_h_to_4h.bias torch.float16
transformer.h.0.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.0.mlp.dense_4h_to_h.bias torch.float16
transformer.h.1.input_layernorm.weight torch.float16
transformer.h.1.input_layernorm.bias torch.float16
transformer.h.1.self_attention.query_key_value.weight torch.uint8
transformer.h.1.self_attention.query_key_value.bias torch.float16
transformer.h.1.self_attention.dense.weight torch.uint8
transformer.h.1.self_attention.dense.bias torch.float16
transformer.h.1.post_attention_layernorm.weight torch.float16
transformer.h.1.post_attention_layernorm.bias torch.float16
transformer.h.1.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.1.mlp.dense_h_to_4h.bias torch.float16
transformer.h.1.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.1.mlp.dense_4h_to_h.bias torch.float16
transformer.h.2.input_layernorm.weight torch.float16
transformer.h.2.input_layernorm.bias torch.float16
transformer.h.2.self_attention.query_key_value.weight torch.uint8
transformer.h.2.self_attention.query_key_value.bias torch.float16
transformer.h.2.self_attention.dense.weight torch.uint8
transformer.h.2.self_attention.dense.bias torch.float16
transformer.h.2.post_attention_layernorm.weight torch.float16
transformer.h.2.post_attention_layernorm.bias torch.float16
transformer.h.2.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.2.mlp.dense_h_to_4h.bias torch.float16
transformer.h.2.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.2.mlp.dense_4h_to_h.bias torch.float16
transformer.h.3.input_layernorm.weight torch.float16
transformer.h.3.input_layernorm.bias torch.float16
transformer.h.3.self_attention.query_key_value.weight torch.uint8
transformer.h.3.self_attention.query_key_value.bias torch.float16
transformer.h.3.self_attention.dense.weight torch.uint8
transformer.h.3.self_attention.dense.bias torch.float16
transformer.h.3.post_attention_layernorm.weight torch.float16
transformer.h.3.post_attention_layernorm.bias torch.float16
transformer.h.3.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.3.mlp.dense_h_to_4h.bias torch.float16
transformer.h.3.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.3.mlp.dense_4h_to_h.bias torch.float16
transformer.h.4.input_layernorm.weight torch.float16
transformer.h.4.input_layernorm.bias torch.float16
transformer.h.4.self_attention.query_key_value.weight torch.uint8
transformer.h.4.self_attention.query_key_value.bias torch.float16
transformer.h.4.self_attention.dense.weight torch.uint8
transformer.h.4.self_attention.dense.bias torch.float16
transformer.h.4.post_attention_layernorm.weight torch.float16
transformer.h.4.post_attention_layernorm.bias torch.float16
transformer.h.4.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.4.mlp.dense_h_to_4h.bias torch.float16
transformer.h.4.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.4.mlp.dense_4h_to_h.bias torch.float16
transformer.h.5.input_layernorm.weight torch.float16
transformer.h.5.input_layernorm.bias torch.float16
transformer.h.5.self_attention.query_key_value.weight torch.uint8
transformer.h.5.self_attention.query_key_value.bias torch.float16
transformer.h.5.self_attention.dense.weight torch.uint8
transformer.h.5.self_attention.dense.bias torch.float16
transformer.h.5.post_attention_layernorm.weight torch.float16
transformer.h.5.post_attention_layernorm.bias torch.float16
transformer.h.5.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.5.mlp.dense_h_to_4h.bias torch.float16
transformer.h.5.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.5.mlp.dense_4h_to_h.bias torch.float16
transformer.h.6.input_layernorm.weight torch.float16
transformer.h.6.input_layernorm.bias torch.float16
transformer.h.6.self_attention.query_key_value.weight torch.uint8
transformer.h.6.self_attention.query_key_value.bias torch.float16
transformer.h.6.self_attention.dense.weight torch.uint8
transformer.h.6.self_attention.dense.bias torch.float16
transformer.h.6.post_attention_layernorm.weight torch.float16
transformer.h.6.post_attention_layernorm.bias torch.float16
transformer.h.6.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.6.mlp.dense_h_to_4h.bias torch.float16
transformer.h.6.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.6.mlp.dense_4h_to_h.bias torch.float16
transformer.h.7.input_layernorm.weight torch.float16
transformer.h.7.input_layernorm.bias torch.float16
transformer.h.7.self_attention.query_key_value.weight torch.uint8
transformer.h.7.self_attention.query_key_value.bias torch.float16
transformer.h.7.self_attention.dense.weight torch.uint8
transformer.h.7.self_attention.dense.bias torch.float16
transformer.h.7.post_attention_layernorm.weight torch.float16
transformer.h.7.post_attention_layernorm.bias torch.float16
transformer.h.7.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.7.mlp.dense_h_to_4h.bias torch.float16
transformer.h.7.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.7.mlp.dense_4h_to_h.bias torch.float16
transformer.h.8.input_layernorm.weight torch.float16
transformer.h.8.input_layernorm.bias torch.float16
transformer.h.8.self_attention.query_key_value.weight torch.uint8
transformer.h.8.self_attention.query_key_value.bias torch.float16
transformer.h.8.self_attention.dense.weight torch.uint8
transformer.h.8.self_attention.dense.bias torch.float16
transformer.h.8.post_attention_layernorm.weight torch.float16
transformer.h.8.post_attention_layernorm.bias torch.float16
transformer.h.8.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.8.mlp.dense_h_to_4h.bias torch.float16
transformer.h.8.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.8.mlp.dense_4h_to_h.bias torch.float16
transformer.h.9.input_layernorm.weight torch.float16
transformer.h.9.input_layernorm.bias torch.float16
transformer.h.9.self_attention.query_key_value.weight torch.uint8
transformer.h.9.self_attention.query_key_value.bias torch.float16
transformer.h.9.self_attention.dense.weight torch.uint8
transformer.h.9.self_attention.dense.bias torch.float16
transformer.h.9.post_attention_layernorm.weight torch.float16
transformer.h.9.post_attention_layernorm.bias torch.float16
transformer.h.9.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.9.mlp.dense_h_to_4h.bias torch.float16
transformer.h.9.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.9.mlp.dense_4h_to_h.bias torch.float16
transformer.h.10.input_layernorm.weight torch.float16
transformer.h.10.input_layernorm.bias torch.float16
transformer.h.10.self_attention.query_key_value.weight torch.uint8
transformer.h.10.self_attention.query_key_value.bias torch.float16
transformer.h.10.self_attention.dense.weight torch.uint8
transformer.h.10.self_attention.dense.bias torch.float16
transformer.h.10.post_attention_layernorm.weight torch.float16
transformer.h.10.post_attention_layernorm.bias torch.float16
transformer.h.10.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.10.mlp.dense_h_to_4h.bias torch.float16
transformer.h.10.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.10.mlp.dense_4h_to_h.bias torch.float16
transformer.h.11.input_layernorm.weight torch.float16
transformer.h.11.input_layernorm.bias torch.float16
transformer.h.11.self_attention.query_key_value.weight torch.uint8
transformer.h.11.self_attention.query_key_value.bias torch.float16
transformer.h.11.self_attention.dense.weight torch.uint8
transformer.h.11.self_attention.dense.bias torch.float16
transformer.h.11.post_attention_layernorm.weight torch.float16
transformer.h.11.post_attention_layernorm.bias torch.float16
transformer.h.11.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.11.mlp.dense_h_to_4h.bias torch.float16
transformer.h.11.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.11.mlp.dense_4h_to_h.bias torch.float16
transformer.h.12.input_layernorm.weight torch.float16
transformer.h.12.input_layernorm.bias torch.float16
transformer.h.12.self_attention.query_key_value.weight torch.uint8
transformer.h.12.self_attention.query_key_value.bias torch.float16
transformer.h.12.self_attention.dense.weight torch.uint8
transformer.h.12.self_attention.dense.bias torch.float16
transformer.h.12.post_attention_layernorm.weight torch.float16
transformer.h.12.post_attention_layernorm.bias torch.float16
transformer.h.12.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.12.mlp.dense_h_to_4h.bias torch.float16
transformer.h.12.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.12.mlp.dense_4h_to_h.bias torch.float16
transformer.h.13.input_layernorm.weight torch.float16
transformer.h.13.input_layernorm.bias torch.float16
transformer.h.13.self_attention.query_key_value.weight torch.uint8
transformer.h.13.self_attention.query_key_value.bias torch.float16
transformer.h.13.self_attention.dense.weight torch.uint8
transformer.h.13.self_attention.dense.bias torch.float16
transformer.h.13.post_attention_layernorm.weight torch.float16
transformer.h.13.post_attention_layernorm.bias torch.float16
transformer.h.13.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.13.mlp.dense_h_to_4h.bias torch.float16
transformer.h.13.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.13.mlp.dense_4h_to_h.bias torch.float16
transformer.h.14.input_layernorm.weight torch.float16
transformer.h.14.input_layernorm.bias torch.float16
transformer.h.14.self_attention.query_key_value.weight torch.uint8
transformer.h.14.self_attention.query_key_value.bias torch.float16
transformer.h.14.self_attention.dense.weight torch.uint8
transformer.h.14.self_attention.dense.bias torch.float16
transformer.h.14.post_attention_layernorm.weight torch.float16
transformer.h.14.post_attention_layernorm.bias torch.float16
transformer.h.14.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.14.mlp.dense_h_to_4h.bias torch.float16
transformer.h.14.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.14.mlp.dense_4h_to_h.bias torch.float16
transformer.h.15.input_layernorm.weight torch.float16
transformer.h.15.input_layernorm.bias torch.float16
transformer.h.15.self_attention.query_key_value.weight torch.uint8
transformer.h.15.self_attention.query_key_value.bias torch.float16
transformer.h.15.self_attention.dense.weight torch.uint8
transformer.h.15.self_attention.dense.bias torch.float16
transformer.h.15.post_attention_layernorm.weight torch.float16
transformer.h.15.post_attention_layernorm.bias torch.float16
transformer.h.15.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.15.mlp.dense_h_to_4h.bias torch.float16
transformer.h.15.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.15.mlp.dense_4h_to_h.bias torch.float16
transformer.h.16.input_layernorm.weight torch.float16
transformer.h.16.input_layernorm.bias torch.float16
transformer.h.16.self_attention.query_key_value.weight torch.uint8
transformer.h.16.self_attention.query_key_value.bias torch.float16
transformer.h.16.self_attention.dense.weight torch.uint8
transformer.h.16.self_attention.dense.bias torch.float16
transformer.h.16.post_attention_layernorm.weight torch.float16
transformer.h.16.post_attention_layernorm.bias torch.float16
transformer.h.16.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.16.mlp.dense_h_to_4h.bias torch.float16
transformer.h.16.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.16.mlp.dense_4h_to_h.bias torch.float16
transformer.h.17.input_layernorm.weight torch.float16
transformer.h.17.input_layernorm.bias torch.float16
transformer.h.17.self_attention.query_key_value.weight torch.uint8
transformer.h.17.self_attention.query_key_value.bias torch.float16
transformer.h.17.self_attention.dense.weight torch.uint8
transformer.h.17.self_attention.dense.bias torch.float16
transformer.h.17.post_attention_layernorm.weight torch.float16
transformer.h.17.post_attention_layernorm.bias torch.float16
transformer.h.17.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.17.mlp.dense_h_to_4h.bias torch.float16
transformer.h.17.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.17.mlp.dense_4h_to_h.bias torch.float16
transformer.h.18.input_layernorm.weight torch.float16
transformer.h.18.input_layernorm.bias torch.float16
transformer.h.18.self_attention.query_key_value.weight torch.uint8
transformer.h.18.self_attention.query_key_value.bias torch.float16
transformer.h.18.self_attention.dense.weight torch.uint8
transformer.h.18.self_attention.dense.bias torch.float16
transformer.h.18.post_attention_layernorm.weight torch.float16
transformer.h.18.post_attention_layernorm.bias torch.float16
transformer.h.18.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.18.mlp.dense_h_to_4h.bias torch.float16
transformer.h.18.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.18.mlp.dense_4h_to_h.bias torch.float16
transformer.h.19.input_layernorm.weight torch.float16
transformer.h.19.input_layernorm.bias torch.float16
transformer.h.19.self_attention.query_key_value.weight torch.uint8
transformer.h.19.self_attention.query_key_value.bias torch.float16
transformer.h.19.self_attention.dense.weight torch.uint8
transformer.h.19.self_attention.dense.bias torch.float16
transformer.h.19.post_attention_layernorm.weight torch.float16
transformer.h.19.post_attention_layernorm.bias torch.float16
transformer.h.19.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.19.mlp.dense_h_to_4h.bias torch.float16
transformer.h.19.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.19.mlp.dense_4h_to_h.bias torch.float16
transformer.h.20.input_layernorm.weight torch.float16
transformer.h.20.input_layernorm.bias torch.float16
transformer.h.20.self_attention.query_key_value.weight torch.uint8
transformer.h.20.self_attention.query_key_value.bias torch.float16
transformer.h.20.self_attention.dense.weight torch.uint8
transformer.h.20.self_attention.dense.bias torch.float16
transformer.h.20.post_attention_layernorm.weight torch.float16
transformer.h.20.post_attention_layernorm.bias torch.float16
transformer.h.20.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.20.mlp.dense_h_to_4h.bias torch.float16
transformer.h.20.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.20.mlp.dense_4h_to_h.bias torch.float16
transformer.h.21.input_layernorm.weight torch.float16
transformer.h.21.input_layernorm.bias torch.float16
transformer.h.21.self_attention.query_key_value.weight torch.uint8
transformer.h.21.self_attention.query_key_value.bias torch.float16
transformer.h.21.self_attention.dense.weight torch.uint8
transformer.h.21.self_attention.dense.bias torch.float16
transformer.h.21.post_attention_layernorm.weight torch.float16
transformer.h.21.post_attention_layernorm.bias torch.float16
transformer.h.21.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.21.mlp.dense_h_to_4h.bias torch.float16
transformer.h.21.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.21.mlp.dense_4h_to_h.bias torch.float16
transformer.h.22.input_layernorm.weight torch.float16
transformer.h.22.input_layernorm.bias torch.float16
transformer.h.22.self_attention.query_key_value.weight torch.uint8
transformer.h.22.self_attention.query_key_value.bias torch.float16
transformer.h.22.self_attention.dense.weight torch.uint8
transformer.h.22.self_attention.dense.bias torch.float16
transformer.h.22.post_attention_layernorm.weight torch.float16
transformer.h.22.post_attention_layernorm.bias torch.float16
transformer.h.22.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.22.mlp.dense_h_to_4h.bias torch.float16
transformer.h.22.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.22.mlp.dense_4h_to_h.bias torch.float16
transformer.h.23.input_layernorm.weight torch.float16
transformer.h.23.input_layernorm.bias torch.float16
transformer.h.23.self_attention.query_key_value.weight torch.uint8
transformer.h.23.self_attention.query_key_value.bias torch.float16
transformer.h.23.self_attention.dense.weight torch.uint8
transformer.h.23.self_attention.dense.bias torch.float16
transformer.h.23.post_attention_layernorm.weight torch.float16
transformer.h.23.post_attention_layernorm.bias torch.float16
transformer.h.23.mlp.dense_h_to_4h.weight torch.uint8
transformer.h.23.mlp.dense_h_to_4h.bias torch.float16
transformer.h.23.mlp.dense_4h_to_h.weight torch.uint8
transformer.h.23.mlp.dense_4h_to_h.bias torch.float16
transformer.ln_f.weight torch.float16
transformer.ln_f.bias torch.float16

下面2个部分是LoRA相关的配置。

1、PEFT 步骤1 配置文件

在使用PEFT进行微调时,我们首先需要创建一个配置文件,该文件定义了微调过程中的各种设置,如学习率调度、优化器选择等。

from peft import LoraConfig, TaskType, get_peft_model
## ,target_modules=["query_key_value"],r=8
config = LoraConfig(task_type=TaskType.CAUSAL_LM,r=8, target_modules=['query_key_value'])
config

输出

LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, r=8, target_modules=['query_key_value'], lora_alpha=8, lora_dropout=0.0, fan_in_fan_out=False, bias='none', modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None)

启用梯度计算

# 在深度神经网络 [deep neural network] 训练时,需要对每个参数或权重 [parameter/weight] 计算其对损失函数 
# [loss function] 的梯度 [gradient],从而进行反向传播 [back propagation] 和优化[optimization]。
# 默认情况下不会计算输入数据 [input data] 的梯度,即使它们在计算中起到了关键的作用。但是,在某些应用场景中,
# 例如图像生成 [image generation]、注意力机制 [attention mechanism] 等,需要计算输入数据的梯度。此时,
# 可以通过启用计算输入梯度的功能,对输入数据进行求导并利用其梯度信息进行优化。
# 作用: 启用该功能这对于在保持模型权重固定的同时微调适配器权重非常有用。model.enable_input_require_grads()

2、PEFT 步骤2 创建模型

接下来,我们使用PEFT和预训练模型来创建一个微调模型。这个模型将包含原始的预训练模型以及由PEFT引入的低秩参数。

model = get_peft_model(model, config)
model

输出

PeftModelForCausalLM((base_model): LoraModel((model): BloomForCausalLM((transformer): BloomModel((word_embeddings): Embedding(46145, 2048)(word_embeddings_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)(h): ModuleList((0-23): 24 x BloomBlock((input_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)(self_attention): BloomAttention((query_key_value): Linear4bit(in_features=2048, out_features=6144, bias=True(lora_dropout): ModuleDict((default): Identity())(lora_A): ModuleDict((default): Linear(in_features=2048, out_features=8, bias=False))(lora_B): ModuleDict((default): Linear(in_features=8, out_features=6144, bias=False))(lora_embedding_A): ParameterDict()(lora_embedding_B): ParameterDict())(dense): Linear4bit(in_features=2048, out_features=2048, bias=True)(attention_dropout): Dropout(p=0.0, inplace=False))(post_attention_layernorm): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)(mlp): BloomMLP((dense_h_to_4h): Linear4bit(in_features=2048, out_features=8192, bias=True)(gelu_impl): BloomGelu()(dense_4h_to_h): Linear4bit(in_features=8192, out_features=2048, bias=True))))(ln_f): LayerNorm((2048,), eps=1e-05, elementwise_affine=True))(lm_head): Linear(in_features=2048, out_features=46145, bias=False)))
)

查看配置

config

输出

LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, r=8, target_modules={'query_key_value', 'dense_4h_to_h'}, lora_alpha=8, lora_dropout=0.0, fan_in_fan_out=False, bias='none', modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={})

步骤5 配置训练参数

在这一步,我们定义训练参数,这些参数包括输出目录、学习率、权重衰减、梯度累积步数、训练周期数等。这些参数将被用来配置训练过程。

指定分页优化器为"paged_adamw_32bit",这是一种针对低秩模型的优化算法

args = TrainingArguments(output_dir="/root/autodl-tmp/tuningdata/qlora",  # 指定模型训练结果的输出目录per_device_train_batch_size=4,  # 设置每个设备(如GPU)在训练过程中的批次大小为4gradient_accumulation_steps=8,  # 指定梯度累积步数为8,即将多个批次的梯度累加后再进行一次参数更新logging_steps=20,  # 每20个步骤记录一次日志信息num_train_epochs=1,  # 指定训练的总轮数为1gradient_checkpointing=True,  # 启用梯度检查点技术,可以减少内存占用并加速训练过程optim="paged_adamw_32bit"  # 指定分页优化器为"paged_adamw_32bit",这是一种针对低秩模型的优化算法
)

步骤6 创建训练器

最后,我们创建一个训练器实例,它封装了训练循环。训练器将负责运行训练过程,并根据我们之前定义的参数进行优化。

trainer = Trainer(model=model,args=args,train_dataset=tokenized_ds,data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)

步骤7 模型训练

通过调用训练器的train()方法,我们启动模型的训练过程。这将根据之前定义的参数执行模型的训练。

trainer.train()

步骤8 模型推理

训练完成后,我们可以使用训练好的模型进行推理。

from peft import PeftModel
from transformers import pipeline#加载基础模型
model = AutoModelForCausalLM.from_pretrained("Langboat/bloom-1b4-zh", low_cpu_mem_usage=True)
tokenizer = AutoTokenizer.from_pretrained("Langboat/bloom-1b4-zh")#加载lora模型
p_model = PeftModel.from_pretrained(model=model, model_id="/root/autodl-tmp/tuningdata/qlora/checkpoint-500")#模型推理
pipe = pipeline("text-generation", model=p_model, tokenizer=tokenizer, device=0)
ipt = "Human: {}\n{}".format("如何写好一个简历?", "").strip() + "\n\nAssistant: "
pipe(ipt, max_length=500, do_sample=True, )

输出

[{'generated_text': 'Human: 如何写好一个简历?\n\nAssistant: 好的,那么你应该考虑以下几点:\n\n1. 职位相关性\n\n有些职位可能会要求你具有相应的学历或工作经验,所以你需要在简历中附上这些信息,以确保你不会被误解为没有相关经验或学历。\n\n2. 个人信息部分\n\n在你的个人信息部分上,一定要附上你自述的职位,并提供你详细的职位描述。\n\n3. 背景与工作经历\n\n在这里你可以列出你过去的工作经历,包括工作项目、取得的奖励、你的发展方向、参加过的课程等。\n\n4. 优势项目\n\n除了上面提到的经历外,你还可以补充一些你擅长的项目,这样你就可以更容易让招聘人员了解到你的特质并做出判断。\n\n5. 能力证明部分\n\n这里你需要附上你过去工作中涉及到的关键工具和流程,以及通过这些工具和流程实现的实际结果。\n\n6. 本职工作领域\n\n你还应该附上你的主要工作领域,这样招聘人员就可以了解你的技能、经验和知识在哪些领域发挥着作用。\n\n7. 专长描述部分\n\n在这些方面,你可以描述一下你在这个专业领域拥有过哪些独特的技能,哪些领域你比其他人更有优势,以及有哪些是你自己擅长的。\n\n8. 职位描述部分\n\n在这里你可以附上你在当前工作领域取得的成就,描述下你在这项工作中能够为公司带来的价值,并证明你能够胜任这份工作。\n\n9. 未来的发展规划\n\n除了这个部分,你也可以补充一些未来的发展规划,这样招聘人员就可以了解你的目标和野心。\n\n10. 联系方式\n\n这里你可以附上你的联络方式,以便招聘人员能够及时与你联系,讨论相关事宜。\n\n11. 备注部分\n\n在简历的最后,你可以附上一个个人备注部分,你可以在这里说明如何能够更好的帮助面试者了解你,并阐述下你想找工作的原因。'}]

总结

QLoRA技术为大型语言模型的预训练与微调提供了一种高效、节省资源的方案。通过精心设计的量化策略和低秩适配器,QLoRA在保证模型性能的同时,显著降低了内存占用,为AI领域的研究者和工程师提供了宝贵的实践经验。

在这里插入图片描述

🎯🔖更多专栏系列文章:AIGC-AI大模型探索之路

如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

这篇关于AI大模型探索之路-训练篇17:大语言模型预训练-微调技术之QLoRA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970059

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl