ICP算法(Iterative Closest Point)及VTK实现

2024-05-08 09:58

本文主要是介绍ICP算法(Iterative Closest Point)及VTK实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:ICP算法(Iterative Closest Point)及VTK实现 作者:小星星恋上大太阳
转载而来 ,自己学的医学图像 ,所以算法原理尚可借鉴,这篇原理讲的很不错 网上搜了很多 始终不明白 似乎这次能知道个来龙去脉了。非常感谢该版主~~~

ICP算法最初由Besl和Mckey提出,是一种基于轮廓特征的点配准方法。基准点在CT图像坐标系及世界坐标系下的坐标点集P = {Pi, i = 0,1, 2,…,k}及U = {Ui,i=0,1,2,…,n}。其中,U与P元素间不必存在一一对应关系,元素数目亦不必相同,设k ≥ n。配准过程就是求取 2 个坐标系间的旋转和平移变换矩阵,使得来自U与P的同源点间距离最小。其过程如下:

(1)计算最近点,即对于集合U中的每一个点,在集合P中都找出距该点最近的对应点,设集合P中由这些对应点组成的新点集为Q = {qi,i = 0,1,2,…,n}。

(2)采用最小均方根法,计算点集 U 与 Q 之间的配准,使 得到配准变换矩阵 R,T,其中R是 3×3 的旋转矩阵,T 是 3×1 的平移矩阵。

(3)计算坐标变换,即对于集合U,用配准变换矩阵R,T进行坐标变换,得到新的点集U1,即U1 = RU + T

(4)计算U1与Q之间的均方根误差,如小于预设的极限值ε,则结束,否则,以点集U1替换U,重复上述步骤。

VTK中有一个类vtkIterativeClosestPointTransform实现了ICP 算法,并将ICP算法保存在一个4×4的齐次矩阵中。那么如何使用这个类的函数内?以下是一个可参考的DEMO,功能是获得两个坐标系内的点之间的对应关系,也就是求这两个坐标系之间的平移和旋转矩阵。

#include <vtkMatrix4x4.h>

#include <vtkPoints.h>

#include <vtkPolyData.h>

#include <vtkLandmarkTransform.h>

#include <vtkPoints.h>

#include <vtkPolyData.h>

#include <vtkCellArray.h>

#include <vtkIterativeClosestPointTransform.h>

#include <vtkTransformPolyDataFilter.h>

#include <vtkLandmarkTransform.h> //to set type to ridgid body

#include <vtkMath.h>

#include <vtkMatrix4x4.h>

#include <iostream>

 

vtkPolyData* CreatePolyData();

vtkPolyData* PerturbPolyData(vtkPolyData* polydata);

 

int _tmain(int argc, _TCHAR* argv[])

{

    vtkPolyData* TargetPolydata = CreatePolyData();//创建目标坐标系内的点集

    //创建源坐标系内的点,实际上是通过给目标坐标系内点集加一个扰动实现的

    vtkPolyData* SourcePolydata = PerturbPolyData(TargetPolydata);

    //开始用vtkIterativeClosestPointTransform类实现 ICP算法

vtkIterativeClosestPointTransform * icp = vtkIterativeClosestPointTransform::New();

    icp->SetSource(SourcePolydata);

    icp->SetTarget(TargetPolydata);

    icp->GetLandmarkTransform()->SetModeToRigidBody();  icp->SetMaximumNumberOfIterations(20);

    icp->StartByMatchingCentroidsOn();

    icp->Modified();

    icp->Update();

 

    vtkMatrix4x4* M = icp->GetMatrix();

    std::cout << "The resulting matrix is: " << *M << std::cout;

//以下是为更方便地显示矩阵,统一了矩阵内数字显示形式,矩阵内数字形如:1.08e-001

    for(int i = 0;i<= 3;i++)

    {

        printf("n");

        for(int j = 0;j <= 3;j++)

        {

            printf("%et",M->Element[i][j]);

        }

    }

    SourcePolydata->Delete();

    TargetPolydata->Delete();

    getchar();

    return 0;

}

 

vtkPolyData* CreatePolyData()

{

//This function creates a set of 5 points (the origin and a point unit distance along each axis)

    vtkPoints* SourcePoints = vtkPoints::New();

    vtkCellArray* SourceVertices = vtkCellArray::New();

    //create three points and create vertices out of them

    vtkIdType pid[1]; //记录下一个要加入的点在vtkPoints 中存储序号

    double Origin[3] = {0.0, 0.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(Origin);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint1[3] = {1.0, 0.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint1);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint2[3] = {0.0, 1.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint2);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint3[3] = {1.0, 1.0, 0.0};//{0.0, 0.0, 1.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint3);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint4[3] = {0.5, 0.5, 0.0};//{0.0, 0.0, 1.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint4);

    SourceVertices->InsertNextCell(1,pid);

    vtkPolyData* polydata = vtkPolyData::New();

    polydata->SetPoints(SourcePoints); //把点导入的polydata中去

    polydata->SetVerts(SourceVertices);

    return polydata;

}

 

vtkPolyData* PerturbPolyData(vtkPolyData* OldPolydata)

{

    vtkPolyData* polydata = vtkPolyData::New();

    polydata->DeepCopy(OldPolydata);

    vtkPoints* Points = polydata->GetPoints();

    size_t Sum = Points->GetNumberOfPoints();

    double p[3];

    Points->GetPoint(1, p);

    p[0] = sqrt(2.0)/2.0;

    p[2] = sqrt(2.0)/2.0;

    Points->SetPoint(1, p);///

    Points->GetPoint(3, p);

    p[0] = sqrt(2.0)/2.0;

    p[2] = sqrt(2.0)/2.0;

    Points->SetPoint(3, p);//

    Points->GetPoint(4, p);

    p[0] = sqrt(2.0)/4.0;

    p[2] = sqrt(2.0)/4.0;

    Points->SetPoint(4, p);//

    return polydata;

}

不过VTK计算出来的矩阵好像是反的,即

 = RU + T (其中Q 是源坐标系,U是目标坐标系,也就是我给每个点加了扰动的后的坐标系)

我是照着http://www.vtk.org/Wiki/Iterative_Closest_Points_(ICP)_Transform内的源程序改写出以上代码的,去掉了原来的随机扰动等部分,取的点很简单很容易验证算出来的旋转和平移矩阵是否正确。

这篇关于ICP算法(Iterative Closest Point)及VTK实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970012

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J