ICP算法(Iterative Closest Point)及VTK实现

2024-05-08 09:58

本文主要是介绍ICP算法(Iterative Closest Point)及VTK实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文地址:ICP算法(Iterative Closest Point)及VTK实现 作者:小星星恋上大太阳
转载而来 ,自己学的医学图像 ,所以算法原理尚可借鉴,这篇原理讲的很不错 网上搜了很多 始终不明白 似乎这次能知道个来龙去脉了。非常感谢该版主~~~

ICP算法最初由Besl和Mckey提出,是一种基于轮廓特征的点配准方法。基准点在CT图像坐标系及世界坐标系下的坐标点集P = {Pi, i = 0,1, 2,…,k}及U = {Ui,i=0,1,2,…,n}。其中,U与P元素间不必存在一一对应关系,元素数目亦不必相同,设k ≥ n。配准过程就是求取 2 个坐标系间的旋转和平移变换矩阵,使得来自U与P的同源点间距离最小。其过程如下:

(1)计算最近点,即对于集合U中的每一个点,在集合P中都找出距该点最近的对应点,设集合P中由这些对应点组成的新点集为Q = {qi,i = 0,1,2,…,n}。

(2)采用最小均方根法,计算点集 U 与 Q 之间的配准,使 得到配准变换矩阵 R,T,其中R是 3×3 的旋转矩阵,T 是 3×1 的平移矩阵。

(3)计算坐标变换,即对于集合U,用配准变换矩阵R,T进行坐标变换,得到新的点集U1,即U1 = RU + T

(4)计算U1与Q之间的均方根误差,如小于预设的极限值ε,则结束,否则,以点集U1替换U,重复上述步骤。

VTK中有一个类vtkIterativeClosestPointTransform实现了ICP 算法,并将ICP算法保存在一个4×4的齐次矩阵中。那么如何使用这个类的函数内?以下是一个可参考的DEMO,功能是获得两个坐标系内的点之间的对应关系,也就是求这两个坐标系之间的平移和旋转矩阵。

#include <vtkMatrix4x4.h>

#include <vtkPoints.h>

#include <vtkPolyData.h>

#include <vtkLandmarkTransform.h>

#include <vtkPoints.h>

#include <vtkPolyData.h>

#include <vtkCellArray.h>

#include <vtkIterativeClosestPointTransform.h>

#include <vtkTransformPolyDataFilter.h>

#include <vtkLandmarkTransform.h> //to set type to ridgid body

#include <vtkMath.h>

#include <vtkMatrix4x4.h>

#include <iostream>

 

vtkPolyData* CreatePolyData();

vtkPolyData* PerturbPolyData(vtkPolyData* polydata);

 

int _tmain(int argc, _TCHAR* argv[])

{

    vtkPolyData* TargetPolydata = CreatePolyData();//创建目标坐标系内的点集

    //创建源坐标系内的点,实际上是通过给目标坐标系内点集加一个扰动实现的

    vtkPolyData* SourcePolydata = PerturbPolyData(TargetPolydata);

    //开始用vtkIterativeClosestPointTransform类实现 ICP算法

vtkIterativeClosestPointTransform * icp = vtkIterativeClosestPointTransform::New();

    icp->SetSource(SourcePolydata);

    icp->SetTarget(TargetPolydata);

    icp->GetLandmarkTransform()->SetModeToRigidBody();  icp->SetMaximumNumberOfIterations(20);

    icp->StartByMatchingCentroidsOn();

    icp->Modified();

    icp->Update();

 

    vtkMatrix4x4* M = icp->GetMatrix();

    std::cout << "The resulting matrix is: " << *M << std::cout;

//以下是为更方便地显示矩阵,统一了矩阵内数字显示形式,矩阵内数字形如:1.08e-001

    for(int i = 0;i<= 3;i++)

    {

        printf("n");

        for(int j = 0;j <= 3;j++)

        {

            printf("%et",M->Element[i][j]);

        }

    }

    SourcePolydata->Delete();

    TargetPolydata->Delete();

    getchar();

    return 0;

}

 

vtkPolyData* CreatePolyData()

{

//This function creates a set of 5 points (the origin and a point unit distance along each axis)

    vtkPoints* SourcePoints = vtkPoints::New();

    vtkCellArray* SourceVertices = vtkCellArray::New();

    //create three points and create vertices out of them

    vtkIdType pid[1]; //记录下一个要加入的点在vtkPoints 中存储序号

    double Origin[3] = {0.0, 0.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(Origin);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint1[3] = {1.0, 0.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint1);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint2[3] = {0.0, 1.0, 0.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint2);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint3[3] = {1.0, 1.0, 0.0};//{0.0, 0.0, 1.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint3);

    SourceVertices->InsertNextCell(1,pid);

    double SourcePoint4[3] = {0.5, 0.5, 0.0};//{0.0, 0.0, 1.0};

    pid[0] = SourcePoints->InsertNextPoint(SourcePoint4);

    SourceVertices->InsertNextCell(1,pid);

    vtkPolyData* polydata = vtkPolyData::New();

    polydata->SetPoints(SourcePoints); //把点导入的polydata中去

    polydata->SetVerts(SourceVertices);

    return polydata;

}

 

vtkPolyData* PerturbPolyData(vtkPolyData* OldPolydata)

{

    vtkPolyData* polydata = vtkPolyData::New();

    polydata->DeepCopy(OldPolydata);

    vtkPoints* Points = polydata->GetPoints();

    size_t Sum = Points->GetNumberOfPoints();

    double p[3];

    Points->GetPoint(1, p);

    p[0] = sqrt(2.0)/2.0;

    p[2] = sqrt(2.0)/2.0;

    Points->SetPoint(1, p);///

    Points->GetPoint(3, p);

    p[0] = sqrt(2.0)/2.0;

    p[2] = sqrt(2.0)/2.0;

    Points->SetPoint(3, p);//

    Points->GetPoint(4, p);

    p[0] = sqrt(2.0)/4.0;

    p[2] = sqrt(2.0)/4.0;

    Points->SetPoint(4, p);//

    return polydata;

}

不过VTK计算出来的矩阵好像是反的,即

 = RU + T (其中Q 是源坐标系,U是目标坐标系,也就是我给每个点加了扰动的后的坐标系)

我是照着http://www.vtk.org/Wiki/Iterative_Closest_Points_(ICP)_Transform内的源程序改写出以上代码的,去掉了原来的随机扰动等部分,取的点很简单很容易验证算出来的旋转和平移矩阵是否正确。

这篇关于ICP算法(Iterative Closest Point)及VTK实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/970012

相关文章

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

Mybatis 传参与排序模糊查询功能实现

《Mybatis传参与排序模糊查询功能实现》:本文主要介绍Mybatis传参与排序模糊查询功能实现,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、#{ }和${ }传参的区别二、排序三、like查询四、数据库连接池五、mysql 开发企业规范一、#{ }和${ }传参的

Docker镜像修改hosts及dockerfile修改hosts文件的实现方式

《Docker镜像修改hosts及dockerfile修改hosts文件的实现方式》:本文主要介绍Docker镜像修改hosts及dockerfile修改hosts文件的实现方式,具有很好的参考价... 目录docker镜像修改hosts及dockerfile修改hosts文件准备 dockerfile 文

基于SpringBoot+Mybatis实现Mysql分表

《基于SpringBoot+Mybatis实现Mysql分表》这篇文章主要为大家详细介绍了基于SpringBoot+Mybatis实现Mysql分表的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录基本思路定义注解创建ThreadLocal创建拦截器业务处理基本思路1.根据创建时间字段按年进

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co