斐波那契数列及青蛙跳台阶问题

2024-05-08 09:38

本文主要是介绍斐波那契数列及青蛙跳台阶问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目1:

写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。

斐波那契(Fibonacci)数列定义如下:

f(n)=0,1,f(n1)+f(n2),n=0n=1n>2

效率很低的解法:

  1. 递归解法(效率很低)
long long Fibonacci_Solution1(unsigned int n)
{if(n <= 0)return 0;if(n == 1)return 1;return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
}

2 循环解法:改进的算法:从下往上计算。首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3)。。。。。依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是o(n)。实现代码如下:

long long Fibonacci(unsigned n)
{int result[2] = {0 , 1};if(n < 2)return result[n];long long fibMinusOne = 1;long long fibMinusTwo = 0;for(unsigned int i = 2 ; i <= n ; ++i){fibN = fibMinusOne + fibMinusTwo;fibMinusTwo = fibMinusOne;fibMinusOne = fibN;}return fibN;
}

题目2:

 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

可以把n级台阶时的跳法看成是n的函数,记为f(n)。当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);另一种选择是第一次跳2级,此时跳法数目等于后面剩下n-2级台阶的跳法数目,即为f(n-2)。因此,n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。分析到这里,不难看出这实际上就是斐波那契数列了。

与斐波那契数列不同的是,其初始值定义稍有不同,
当n=1时,只能跳一级台阶,一种跳法
当n=2时,一次跳一级或两级,两种跳法
所以,关于青蛙跳台阶的定义如下:

f(n)=1,2,f(n1)+f(n2),n=1n=2n>2

  1. 非递归写法
long long FrogJump12Step(int n)
{if (n <= 0){std::cerr << "param error" << std::endl;return -1;}if (n == 1)return 1;if (n == 2)return 2;int frogNMinusOne = 2;//f(n-1)=2int frogNMinusTwo = 1;//f(n-2)=1int frogN = 0;for (unsigned int i = 3; i <= n;++i){frogN = frogNMinusOne + frogNMinusTwo;frogNMinusTwo = frogNMinusOne;frogNMinusOne = frogN;}return frogN;
}
  1. 递归解法
long long FrogJump12StepRecursive(int n)
{if (n <= 0){std::cerr << "param error" << std::endl;return -1;}if (n == 1)return 1;if (n == 2)return 2;return FrogJump12StepRecursive(n - 1) + FrogJump12StepRecursive(n - 2);
}

题目3:

  一只青蛙一次可以跳上1级台阶,也可以跳上2级。。。。。它也可以跳上n级,此时该青蛙跳上一个n级的台阶总共有多少种跳法?

用数学归纳法可以证明: f(n)=2n1 .

递归式证明:
当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;
当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = Fib(1) + Fib(0) = 2;
当n = 3 时,有三种跳的方式,第一次跳出一阶后,后面还有Fib(3-1)中跳法; 第一次跳出二阶后,后面还有Fib(3-2)中跳法;第一次跳出三阶后,后面还有Fib(3-3)中跳法
Fib(3) = Fib(2) + Fib(1)+Fib(0)=4;
当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法……………………..第一次跳出n阶后, 后面还有 Fib(n-n)中跳法.
Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+……….+Fib(n-n)=Fib(0)+Fib(1)+Fib(2)+…….+Fib(n-1)
又因为Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+…….+Fib(n-2)
两式相减得:Fib(n)-Fib(n-1)=Fib(n-1)
=====》 Fib(n) = 2*Fib(n-1) n >= 2
递归等式如下:

f(n)=1,2,2f(n1),n=1n=2n>2

所以: f(n)=2f(n1)=22(n2)....=2n1f(0)=2n1

  1. 非递归解法:
long long FrogJump12nStep(int n)
{if (n <= 0){std::cerr << "param error" << std::endl;return -1;}else if (n == 1)return 1;else{long long  fn1 = 1;long long fn = 0;for (int i = 2; i <= n;++i){fn = 2 * fn1;fn1 = fn;}return fn;}
}
  1. 递归解法
long long FrogJump12nStepRecursive(int n)
{if (n <= 0){std::cerr << "param error" << std::endl;return -1;}else if (n == 1)return 1;else if (n == 2)return 2;elsereturn 2 * FrogJump12nStepRecursive(n - 1);
}

题目4:

小矩形覆盖大矩形,用2*1的小矩形横着或竖着去覆盖各大矩形。

思路:设题解为f(n),

第一步:若第一块矩形竖着放,后边还有n-1个2*1矩形,即此种情况下,有f(n-1)种覆盖方法。
第二部:若第一块横着放,后边还有n-2个2*1矩形,此种情况下,有f(n-2)种覆盖方法。
第三部:可得 f(n)=f(n-1)+f(n-2)

可知,此题可以转化为其斐波那契数列第n项的值。

这篇关于斐波那契数列及青蛙跳台阶问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969977

相关文章

Nginx启动失败:端口80被占用问题的解决方案

《Nginx启动失败:端口80被占用问题的解决方案》在Linux服务器上部署Nginx时,可能会遇到Nginx启动失败的情况,尤其是错误提示bind()to0.0.0.0:80failed,这种问题通... 目录引言问题描述问题分析解决方案1. 检查占用端口 80 的进程使用 netstat 命令使用 ss

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

linux下多个硬盘划分到同一挂载点问题

《linux下多个硬盘划分到同一挂载点问题》在Linux系统中,将多个硬盘划分到同一挂载点需要通过逻辑卷管理(LVM)来实现,首先,需要将物理存储设备(如硬盘分区)创建为物理卷,然后,将这些物理卷组成... 目录linux下多个硬盘划分到同一挂载点需要明确的几个概念硬盘插上默认的是非lvm总结Linux下多

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

pip install jupyterlab失败的原因问题及探索

《pipinstalljupyterlab失败的原因问题及探索》在学习Yolo模型时,尝试安装JupyterLab但遇到错误,错误提示缺少Rust和Cargo编译环境,因为pywinpty包需要它... 目录背景问题解决方案总结背景最近在学习Yolo模型,然后其中要下载jupyter(有点LSVmu像一个

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Java多线程父线程向子线程传值问题及解决

《Java多线程父线程向子线程传值问题及解决》文章总结了5种解决父子之间数据传递困扰的解决方案,包括ThreadLocal+TaskDecorator、UserUtils、CustomTaskDeco... 目录1 背景2 ThreadLocal+TaskDecorator3 RequestContextH

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明