欧式聚类提取-------PCL

2024-05-08 05:04
文章标签 提取 pcl 聚类 欧式

本文主要是介绍欧式聚类提取-------PCL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欧式聚类

std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> PclTool::euclideanClustering(const pcl::PointCloud<pcl::PointXYZ>::Ptr& cloud)
{std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> clustered_clouds;// 下采样pcl::VoxelGrid<pcl::PointXYZ> vg;pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);vg.setInputCloud(cloud);vg.setLeafSize(0.01f, 0.01f, 0.01f);vg.filter(*cloud_filtered);// 创建平面模型分割的对象并设置参数pcl::SACSegmentation<pcl::PointXYZ> seg;pcl::PointIndices::Ptr inliers(new pcl::PointIndices);pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZ>());seg.setOptimizeCoefficients(true);seg.setModelType(pcl::SACMODEL_PLANE);  // 分割模型seg.setMethodType(pcl::SAC_RANSAC);     // 随机参数估计方法seg.setMaxIterations(100);              // 最大的迭代的次数seg.setDistanceThreshold(0.02);         // 设置阀值pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f(new pcl::PointCloud<pcl::PointXYZ>);int i = 0, nr_points = (int)cloud_filtered->points.size();while (cloud_filtered->points.size() > 0.3 * nr_points)  // 滤波停止条件{// Segment the largest planar component from the remaining cloudseg.setInputCloud(cloud_filtered);  // 输入seg.segment(*inliers, *coefficients);if (inliers->indices.size() == 0){std::cout << "Could not estimate a planar model for the given dataset." << std::endl;break;}pcl::ExtractIndices<pcl::PointXYZ> extract;extract.setInputCloud(cloud_filtered);extract.setIndices(inliers);extract.setNegative(false);// Get the points associated with the planar surfaceextract.filter(*cloud_plane);  // [平面std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;//  // 移去平面局内点,提取剩余点云extract.setNegative(true);extract.filter(*cloud_f);*cloud_filtered = *cloud_f;}// 创建KdTree对象用于欧式聚类的搜索pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>);tree->setInputCloud(cloud_filtered);std::vector<pcl::PointIndices> cluster_indices;pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;  // 欧式聚类对象ec.setClusterTolerance(0.02);                       // 设置聚类容差为2cmec.setMinClusterSize(100);                          // 设置一个聚类的最小点数为100ec.setMaxClusterSize(25000);                        // 设置一个聚类的最大点数为25000ec.setSearchMethod(tree);                           // 设置搜索方法ec.setInputCloud(cloud_filtered);ec.extract(cluster_indices);  // 从点云中提取聚类// 迭代聚类索引并创建每个聚类的点云for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); ++it){pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); ++pit)cloud_cluster->points.push_back(cloud_filtered->points[*pit]);cloud_cluster->width = cloud_cluster->points.size();cloud_cluster->height = 1;cloud_cluster->is_dense = true;clustered_clouds.push_back(cloud_cluster);}return clustered_clouds;
}

原始点云

在这里插入图片描述
聚类后得到五个点云

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

这篇关于欧式聚类提取-------PCL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/969379

相关文章

使用Python在Excel中插入、修改、提取和删除超链接

《使用Python在Excel中插入、修改、提取和删除超链接》超链接是Excel中的常用功能,通过点击超链接可以快速跳转到外部网站、本地文件或工作表中的特定单元格,有效提升数据访问的效率和用户体验,这... 目录引言使用工具python在Excel中插入超链接Python修改Excel中的超链接Python

C#从XmlDocument提取完整字符串的方法

《C#从XmlDocument提取完整字符串的方法》文章介绍了两种生成格式化XML字符串的方法,方法一使用`XmlDocument`的`OuterXml`属性,但输出的XML字符串不带格式,可读性差,... 方法1:通过XMLDocument的OuterXml属性,见XmlDocument类该方法获得的xm

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

python解析HTML并提取span标签中的文本

《python解析HTML并提取span标签中的文本》在网页开发和数据抓取过程中,我们经常需要从HTML页面中提取信息,尤其是span元素中的文本,span标签是一个行内元素,通常用于包装一小段文本或... 目录一、安装相关依赖二、html 页面结构三、使用 BeautifulSoup javascript

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering)

Spark MLlib模型训练—聚类算法 PIC(Power Iteration Clustering) Power Iteration Clustering (PIC) 是一种基于图的聚类算法,用于在大规模数据集上进行高效的社区检测。PIC 算法的核心思想是通过迭代图的幂运算来发现数据中的潜在簇。该算法适用于处理大规模图数据,特别是在社交网络分析、推荐系统和生物信息学等领域具有广泛应用。Spa

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密