完全背包基础题(第三十八天)

2024-05-07 14:44

本文主要是介绍完全背包基础题(第三十八天),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

377. 组合总和 Ⅳ

题目

给你一个由 不同 整数组成的数组 nums ,和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。

题目数据保证答案符合 32 位整数范围。

答案

class Solution {public int combinationSum4(int[] nums, int target) {int[] dp = new int[target+1];dp[0] = 1;for(int i=0;i<=target;i++){for(int j=0;j<nums.length;j++){if(i>=nums[j]){dp[i] += dp[i-nums[j]]; }}}return dp[target];}
}






\57. 爬楼梯(第八期模拟笔试)

题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

答案

import java.util.Scanner;public class Main{public static void main (String[] args) {Scanner scanner = new Scanner(System.in);int m,n;while(scanner.hasNextInt()){n = scanner.nextInt();m = scanner.nextInt();int[] dp = new int[n+1];dp[0] = 1;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){if(i>=j){dp[i] += dp[i-j];}}}System.out.println(dp[n]);}}
}






322. 零钱兑换

题目

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

答案

class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount+1];int max = Integer.MAX_VALUE;for(int i=0;i<=amount;i++){dp[i] = max;}dp[0] = 0;for(int i=0;i<coins.length;i++){for(int j=coins[i];j<=amount;j++){if(dp[j-coins[i]]!=max){dp[j] = Math.min(dp[j],dp[j-coins[i]]+1);}}}return dp[amount]==max ? -1 : dp[amount];}
}






279. 完全平方数

题目

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

答案

class Solution {public int numSquares(int n) {int[] dp = new int[n+1];int max = Integer.MAX_VALUE;for(int i=0;i<=n;i++){dp[i] = max;}dp[0] = 0;for(int i=0;i<=n;i++){for(int j=0;j*j<=i;j++){if(dp[i-j*j]!=max){dp[i] = Math.min(dp[i],dp[i-j*j]+1);}}}return dp[n];}
}






139. 单词拆分

题目

给你一个字符串 s 和一个字符串列表 wordDict 作为字典。如果可以利用字典中出现的一个或多个单词拼接出 s 则返回 true

**注意:**不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。

答案

class Solution {public boolean wordBreak(String s, List<String> wordDict) {Set<String> set = new HashSet(wordDict);boolean[] dp = new boolean[s.length()+1];dp[0] = true;for(int i=0;i<dp.length;i++){for(int j=0;j<=i;j++){if(dp[j] && set.contains(s.substring(j,i))){dp[i] = true;}}}return dp[s.length()];}
}

这篇关于完全背包基础题(第三十八天)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967652

相关文章

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

JavaScript中的Map用法完全指南

《JavaScript中的Map用法完全指南》:本文主要介绍JavaScript中Map用法的相关资料,通过实例讲解了Map的创建、常用方法和迭代方式,还探讨了Map与对象的区别,并通过一个例子展... 目录引言1. 创建 Map2. Map 和对象的对比3. Map 的常用方法3.1 set(key, v

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>