tensorflow从已经训练好的模型中,恢复(指定)权重(构建新变量、网络)并继续训练(finetuning)

本文主要是介绍tensorflow从已经训练好的模型中,恢复(指定)权重(构建新变量、网络)并继续训练(finetuning),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前已经写了一篇《Tensorflow保存模型,恢复模型,使用训练好的模型进行预测和提取中间输出(特征)》,里面主要讲恢复模型然后使用该模型

假如要保存或者恢复指定tensor,并且把保存的graph恢复(插入)到当前的graph中呢?

总的来说,目前我会的是两种方法,命名都是很关键!
两种方式保存模型,
1.保存所有tensor,即整张图的所有变量,
2.只保存指定scope的变量
两种方式恢复模型,
1.导入模型的graph,用该graph的saver来restore变量
2.在新的代码段中写好同样的模型(变量名称及scope的name要对应),用默认的graph的saver来restore指定scope的变量

 

两种保存方式:
1.保存整张图,所有变量

 

 
  1. ...

  2. init = tf.global_variables_initializer()

  3. saver = tf.train.Saver()

  4. config = tf.ConfigProto()

  5. config.gpu_options.allow_growth=True

  6. with tf.Session(config=config) as sess:

  7. sess.run(init)

  8. ...

  9. writer.add_graph(sess.graph)

  10. ...

  11. saved_path = saver.save(sess,saver_path)

  12. ...

 

 

2.保存图中的部分变量

 

 
  1. ...

  2. init = tf.global_variables_initializer()

  3. vgg_ref_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='vgg_feat_fc')#获取指定scope的tensor

  4. saver = tf.train.Saver(vgg_ref_vars)#初始化saver时,传入一个var_list的参数

  5. config = tf.ConfigProto()

  6. config.gpu_options.allow_growth=True

  7. with tf.Session(config=config) as sess:

  8. sess.run(init)

  9. ...

  10. writer.add_graph(sess.graph)

  11. ...

  12. saved_path = saver.save(sess,saver_path)

  13. ...

 

 

两种恢复方式:
1.导入graph来恢复

 

 
  1. ...

  2. vgg_meta_path = params['vgg_meta_path'] # 后缀是'.ckpt.meta'的文件

  3. vgg_graph_weight = params['vgg_graph_weight'] # 后缀是'.ckpt'的文件,里面是各个tensor的值

  4. saver_vgg = tf.train.import_meta_graph(vgg_meta_path) # 导入graph到当前的默认graph中,返回导入graph的saver

  5. x_vgg_feat = tf.get_collection('inputs_vgg')[0] #placeholder, [None, 4096],获取输入的placeholder

  6. feat_decode = tf.get_collection('feat_encode')[0] #[None, 1024],获取要使用的tensor

  7. """

  8. 以上两个获取tensor的方式也可以为:

  9. graph = tf.get_default_graph()

  10. centers = graph.get_tensor_by_name('loss/intra/center_loss/centers:0')

  11. 当然,前提是有tensor的名字

  12. """

  13. ...

  14. init = tf.global_variables_initializer()

  15. saver = tf.train.Saver() # 这个是当前新图的saver

  16. config = tf.ConfigProto()

  17. config.gpu_options.allow_growth=True

  18. with tf.Session(config=config) as sess:

  19. sess.run(init)

  20. ...

  21. saver_vgg.restore(sess, vgg_graph_weight)#使用导入图的saver来恢复

  22. ...


2.重写一样的graph,然后恢复指定scope的变量

 

 

 
  1. def re_build():#重建保存的那个graph

  2. with tf.variable_scope('vgg_feat_fc'): #没错,这个scope要和需要恢复模型中的scope对应

  3. ...

  4. return ...

  5.  
  6. ...

  7. vgg_ref_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='vgg_feat_fc') # 既然有这个scope,其实第1个方法中,导入graph后,可以不用返回的vgg_saver,再新建一个指定var_list的vgg_saver就好了,恩,需要传入一个var_list的参数

  8. ...

  9. init = tf.global_variables_initializer()

  10. saver_vgg = tf.train.Saver(vgg_ref_vars) # 这个是要恢复部分的saver

  11. saver = tf.train.Saver() # 这个是当前新图的saver

  12. config = tf.ConfigProto()

  13. config.gpu_options.allow_growth=True

  14. with tf.Session(config=config) as sess:

  15. sess.run(init)

  16. ...

  17. saver_vgg.restore(sess, vgg_graph_weight)#使用导入图的saver来恢复

  18. ...


总结一下,这里的要点就是,在restore的时候,saver要和模型对应,如果直接用当前graph的saver = tf.train.Saver(),来恢复保存模型的权重saver.restore(vgg_graph_weight),就会报错,提示key/tensor ... not found之类的错误;
写graph的时候,一定要注意写好scope和tensor的name,合理插入variable_scope; 

最方便的方式还是,用第1种方式来保存模型,这样就不用重写代码段了,然后第1种方式恢复,不过为了稳妥,最好还是通过获取var_list,指定saver的var_list,妥妥的!


 

最新发现,用第1种方式恢复时,要记得当前的graph和保存的模型中没有重名的tensor,否则当前graph的tensor name可能不是那个name,可能在后面加了"_1"....-_-||

 

在恢复图基础上构建新的网络(变量)并训练(finetuning)(2017.11.9更新)

恢复模型graph和weights在上面已经说了,这里的关键点是怎样只恢复原图的权重 ,并且使optimizer只更新新构造变量(指定层、变量)

(以下code与上面没联系)

 

 
  1. """1.Get input, output , saver and graph"""#从导入图中获取需要的东西

  2. meta_path_restore = model_dir + '/model_'+model_version+'.ckpt.meta'

  3. model_path_restore = model_dir + '/model_'+model_version+'.ckpt'

  4. saver_restore = tf.train.import_meta_graph(meta_path_restore) #获取导入图的saver,便于后面恢复

  5. graph_restore = tf.get_default_graph() #此时默认图就是导入的图

  6. #从导入图中获取需要的tensor

  7. #1. 用collection来获取

  8. input_x = tf.get_collection('inputs')[0]

  9. input_is_training = tf.get_collection('is_training')[0]

  10. output_feat_fused = tf.get_collection('feat_fused')[0]

  11. #2. 用tensor的name来获取

  12. input_y = graph_restore.get_tensor_by_name('label_exp:0')

  13. print('Get tensors...')

  14. print('inputs shape: {}'.format(input_x.get_shape().as_list()))

  15. print('input_is_training shape: {}'.format(input_is_training.get_shape().as_list()))

  16. print('output_feat_fused shape: {}'.format(output_feat_fused.get_shape().as_list()))

  17.  
  18.  
  19. """2.Build new variable for fine tuning"""#构造新的variables用于后面的finetuning

  20. graph_restore.clear_collection('feat_fused') #删除以前的集合,假如finetuning后用新的代替原来的

  21. graph_restore.clear_collection('prob')

  22. #添加新的东西

  23. if F_scale is not None and F_scale!=0:

  24. print('F_scale is not None, value={}'.format(F_scale))

  25. feat_fused = Net_normlize_scale(output_feat_fused, F_scale)

  26. tf.add_to_collection('feat_fused',feat_fused)#重新添加到新集合

  27. logits_fused = last_logits(feat_fused,input_is_training,7) # scope name是"final_logits"

  28.  
  29.  
  30. """3.Get acc and loss"""#构造损失

  31. with tf.variable_scope('accuracy'):

  32. accuracy,prediction = ...

  33. with tf.variable_scope('loss'):

  34. loss = ...

  35.  
  36. """4.Build op for fine tuning"""

  37. global_step = tf.Variable(0, trainable=False,name='global_step')

  38. learning_rate = tf.train.exponential_decay(initial_lr,

  39. global_step=global_step,

  40. decay_steps=decay_steps,

  41. staircase=True,

  42. decay_rate=0.1)

  43. update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

  44. with tf.control_dependencies(update_ops):

  45. var_list = tf.contrib.framework.get_variables('final_logits')#关键!获取指定scope下的变量

  46. train_op = tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9).minimize(loss,global_step=global_step,var_list=var_list) #只更新指定的variables

  47. """5.Begin training"""

  48. init = tf.global_variables_initializer()

  49. saver = tf.train.Saver()

  50. config = tf.ConfigProto()

  51. config.gpu_options.allow_growth=True

  52. with tf.Session(config=config) as sess:

  53. sess.run(init)

  54. saver_restore.restore(sess, model_path_restore) #这里saver_restore对应导入图的saver, 如果用上面新的saver的话会报错 因为多出了一些新的变量 在保存的模型中是没有那些权值的

  55. sess.run(train_op, feed_dict)

  56. .......


再说明下两个关键点:

 

1. 如何在新图的基础上 只恢复 导入图的权重 ?

用导入图的saver: saver_restore

2. 如何只更新指定参数?

用var_list = tf.contrib.framework.get_variables(scope_name)获取指定scope_name下的变量,

然后optimizer.minimize()时传入指定var_list

 

 

附:如何知道tensor名字以及获取指定变量?

1.获取某个操作之后的输出

graph.get_operations()获取所有op

比如<tf.Operation 'common_conv_xxx_net/common_conv_net/flatten/Reshape' type=Reshape>,

那么output_pool_flatten = graph_restore.get_tensor_by_name('common_conv_xxx_net/common_conv_net/flatten/Reshape:0')就是那个位置经过flatten后的输出了

2.获取指定的var的值

用GraphKeys获取变量

tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)返回指定集合的变量

比如 <tf.Variable 'common_conv_xxx_net/final_logits/logits/biases:0' shape=(7,) dtype=float32_ref>

那么var_logits_biases = graph_restore.get_tensor_by_name('common_conv_xxx_net/final_logits/logits/biases:0')就是那个位置的biases了

3.获取指定scope的collection

tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES,scope='common_conv_xxx_net.final_logits')

注意后面的scope是xxx.xxx不是xxx/xxx

这篇关于tensorflow从已经训练好的模型中,恢复(指定)权重(构建新变量、网络)并继续训练(finetuning)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967621

相关文章

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

使用Python实现网络设备配置备份与恢复

《使用Python实现网络设备配置备份与恢复》网络设备配置备份与恢复在网络安全管理中起着至关重要的作用,本文为大家介绍了如何通过Python实现网络设备配置备份与恢复,需要的可以参考下... 目录一、网络设备配置备份与恢复的概念与重要性二、网络设备配置备份与恢复的分类三、python网络设备配置备份与恢复实

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用