单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA

2024-05-07 12:04

本文主要是介绍单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       单目标问题的FW烟花优化算法求解matlab仿真,对比PSO和GA。最后将FW,GA,PSO三种优化算法的优化收敛曲线进行对比。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

.....................................................................
for t=1:Iter%计算每个烟花适应度值for i=1:Npopyfit(i)=func_fitness(x(i,:));end[F(t),~]=min(yfit);Fmin=min(yfit);% 当前代最小适应度Fmax=max(yfit);% 当前代最大适应度%计算每个烟花的爆炸半径E_R和爆炸数目E_N以及产生的爆炸火花E_R = zeros(1,Npop);E_N = zeros(1,Npop);% 高斯变异火花产生Mut=randperm(Npop); % 随机选取烟花索引for m1=1:M   % 对M个烟花进行变异m=Mut(m1);            % 随机选取烟花for n=1:E_N(m)e=1+sqrt(1)*randn(1,Dim); % 高斯变异因子sparks(n,:,m)=sparks(n,:,m).*e;% 应用变异% 变异后的位置约束 if sparks(n,1,m)>500||sparks(n,1,m)<100sparks(n,1,m)=unifrnd(100,500,1,1); endif sparks(n,2,m)>79||sparks(n,2,m)<69sparks(n,2,m)= unifrnd(69,79,1,1);endendend[Fitness,X]=sort(Fitness);  % 适应度升序排列x(1,:)=E_Sum(X(1),:);    % 最优个体dist=pdist(E_Sum);       % 求解各火花两两间的欧式距离S=squareform(dist);      % 将距离向量重排成n*n数组P = zeros(1,n);for i=1:n                % 分别求各行之和P(i)=sum(S(i,:));end
end%求最大值输出
[F(Iter),Y]=min(Fit2);figure;
plot(F, 'LineWidth', 2)
xlabel('迭代次数')
ylabel('目标函数值')
title('FWA算法迭代曲线');save R3.mat  F
48

4.本算法原理

        烟花优化算法是一种模拟自然界烟花爆炸现象的启发式算法,由烟花发射、爆炸、再次爆炸和再次发射四个阶段组成。该算法通过模拟烟花在夜空中爆炸的过程,探索搜索空间,寻找全局最优解。

  • 适应性与灵活性:FWA通过模拟烟花爆炸的动态过程,提供了搜索空间的多样性,适合解决复杂、非线性问题;PSO通过粒子的速度和位置更新快速接近最优解,适合快速收敛的问题;GA通过模拟生物进化机制,具有较强的全局搜索能力,适用于解空间较大的问题。
  • 参数调整:FWA的爆炸半径和火花数直接影响搜索效率和精度,需仔细调整;PSO的惯性权重w、加速常数c1​,c2​对算法性能影响显著;GA的选择压力、交叉概率和变异概率是关键参数,需根据问题特性仔细设定。
  • 收敛性和稳定性:FWA在后期迭代中可能因火花过度密集而降低搜索效率;PSO易陷入局部最优,特别是在高维问题中;GA的收敛速度较慢,但通常能获得较好的全局解。

5.完整程序

VVV

这篇关于单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967300

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

Python实现Microsoft Office自动化的几种方式及对比详解

《Python实现MicrosoftOffice自动化的几种方式及对比详解》办公自动化是指利用现代化设备和技术,代替办公人员的部分手动或重复性业务活动,优质而高效地处理办公事务,实现对信息的高效利用... 目录一、基于COM接口的自动化(pywin32)二、独立文件操作库1. Word处理(python-d

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时