单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA

2024-05-07 12:04

本文主要是介绍单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       单目标问题的FW烟花优化算法求解matlab仿真,对比PSO和GA。最后将FW,GA,PSO三种优化算法的优化收敛曲线进行对比。

2.测试软件版本以及运行结果展示

MATLAB2022A版本运行

3.核心程序

.....................................................................
for t=1:Iter%计算每个烟花适应度值for i=1:Npopyfit(i)=func_fitness(x(i,:));end[F(t),~]=min(yfit);Fmin=min(yfit);% 当前代最小适应度Fmax=max(yfit);% 当前代最大适应度%计算每个烟花的爆炸半径E_R和爆炸数目E_N以及产生的爆炸火花E_R = zeros(1,Npop);E_N = zeros(1,Npop);% 高斯变异火花产生Mut=randperm(Npop); % 随机选取烟花索引for m1=1:M   % 对M个烟花进行变异m=Mut(m1);            % 随机选取烟花for n=1:E_N(m)e=1+sqrt(1)*randn(1,Dim); % 高斯变异因子sparks(n,:,m)=sparks(n,:,m).*e;% 应用变异% 变异后的位置约束 if sparks(n,1,m)>500||sparks(n,1,m)<100sparks(n,1,m)=unifrnd(100,500,1,1); endif sparks(n,2,m)>79||sparks(n,2,m)<69sparks(n,2,m)= unifrnd(69,79,1,1);endendend[Fitness,X]=sort(Fitness);  % 适应度升序排列x(1,:)=E_Sum(X(1),:);    % 最优个体dist=pdist(E_Sum);       % 求解各火花两两间的欧式距离S=squareform(dist);      % 将距离向量重排成n*n数组P = zeros(1,n);for i=1:n                % 分别求各行之和P(i)=sum(S(i,:));end
end%求最大值输出
[F(Iter),Y]=min(Fit2);figure;
plot(F, 'LineWidth', 2)
xlabel('迭代次数')
ylabel('目标函数值')
title('FWA算法迭代曲线');save R3.mat  F
48

4.本算法原理

        烟花优化算法是一种模拟自然界烟花爆炸现象的启发式算法,由烟花发射、爆炸、再次爆炸和再次发射四个阶段组成。该算法通过模拟烟花在夜空中爆炸的过程,探索搜索空间,寻找全局最优解。

  • 适应性与灵活性:FWA通过模拟烟花爆炸的动态过程,提供了搜索空间的多样性,适合解决复杂、非线性问题;PSO通过粒子的速度和位置更新快速接近最优解,适合快速收敛的问题;GA通过模拟生物进化机制,具有较强的全局搜索能力,适用于解空间较大的问题。
  • 参数调整:FWA的爆炸半径和火花数直接影响搜索效率和精度,需仔细调整;PSO的惯性权重w、加速常数c1​,c2​对算法性能影响显著;GA的选择压力、交叉概率和变异概率是关键参数,需根据问题特性仔细设定。
  • 收敛性和稳定性:FWA在后期迭代中可能因火花过度密集而降低搜索效率;PSO易陷入局部最优,特别是在高维问题中;GA的收敛速度较慢,但通常能获得较好的全局解。

5.完整程序

VVV

这篇关于单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967300

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig