大模型模型简化机器人训练;简单易用的 3D 工具Project Neo;特斯拉放出了擎天柱机器人最新训练视频

本文主要是介绍大模型模型简化机器人训练;简单易用的 3D 工具Project Neo;特斯拉放出了擎天柱机器人最新训练视频,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✨ 1: DrEureka

利用大语言模型自动化将机器人仿真环境训练结果转移到真实世界

在这里插入图片描述

DrEureka是一种利用大型语言模型(LLMs)自动化和加速从仿真(sim)到现实世界(real)转移的技术。在机器人技能学习领域,直接在现实环境中训练机器人代价昂贵且效率低下。相比之下,首先在模拟环境中训练,然后将训练好的策略迁移到真实世界(即所谓的sim-to-real转移),是一种更为高效和可行的策略。但是,传统的sim-to-real方法需要手动设计和调整任务奖励函数及模拟物理参数,这一过程既慢又需要大量人力。这就是DrEureka研究工作的意义所在:它尝试用大型语言模型来自动化这一过程。

地址:https://github.com/eureka-research/DrEureka

✨ 2: Neo

Adobe 发布了一个简单易用的 3D 工具Project Neo

在这里插入图片描述

通过3D技术,Project Neo能够为原本平面的2D图像添加立体效果。

能够快速的为图标、动画插图创建独特的3D形状。

通过简单的操作,你可以在几分钟内完成图标、插图设计,极大地提高了工作效率。

地址:https://labs.adobe.com/projects/project-neo/

✨ 3: Optimus

特斯拉放出了擎天柱机器人最新训练视频

在这里插入图片描述

Optimus是特斯拉(Tesla)开发的一款通用型人形机器人,视频中的机器人正在分拣电池,还可以看到Optimus的训练过程。

地址:https://twitter.com/Tesla_Optimus

✨ 4: VILA

英伟达发布的模型,通过大规模的图像-文本数据进行预训练,从而实现视频理解和多图像理解能力。

在这里插入图片描述

VILA是一种视觉语言模型(Visual Language Model,简称VLM),它通过大规模交错的图像-文本数据进行预训练,从而能够实现视频理解和多图像理解的能力。它特别适合于视频内容的分析、多图像间关系的推理,以及图像和文本信息的融合处理。

它的应用场景广泛,特别适合视频内容分析、互动教学、安全监控和医学影像分析等领域。通过AWQ技术的支持,VILA还可以在各种设备上高效运行,为实时图像和视频处理提供了可能。

地址:https://github.com/Efficient-Large-Model/VILA

✨ 5: Core ML Stable Diffusion

一个在苹果平台设备上高效运行Stable Diffusion模型的解决方案

在这里插入图片描述

Core ML Stable Diffusion 是一个允许开发者在苹果硅芯处理器(Apple Silicon,即搭载了 M1 或 M系列芯片的设备)上运行Stable Diffusion模型的功能。这一功能通过Core ML来实现,Core ML 是苹果公司的一个机器学习框架,使得应用可以更高效地在苹果设备上运行机器学习模型。 适用于需要在应用中集成高级图像生成功能的开发者。通过利用苹果硅芯片的强大机器学习能力,开发者可以为用户提供快速、高效、在设备上直接处理的图像生成体验。

地址:https://github.com/apple/ml-stable-diffusion

在这里插入图片描述



更多AI工具,参考国内AiBard123,Github-AiBard123

这篇关于大模型模型简化机器人训练;简单易用的 3D 工具Project Neo;特斯拉放出了擎天柱机器人最新训练视频的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966911

相关文章

流媒体平台/视频监控/安防视频汇聚EasyCVR播放暂停后视频画面黑屏是什么原因?

视频智能分析/视频监控/安防监控综合管理系统EasyCVR视频汇聚融合平台,是TSINGSEE青犀视频垂直深耕音视频流媒体技术、AI智能技术领域的杰出成果。该平台以其强大的视频处理、汇聚与融合能力,在构建全栈视频监控系统中展现出了独特的优势。视频监控管理系统EasyCVR平台内置了强大的视频解码、转码、压缩等技术,能够处理多种视频流格式,并以多种格式(RTMP、RTSP、HTTP-FLV、WebS

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了