第七节课《OpenCompass司南--大模型评测实战》

2024-05-07 07:04

本文主要是介绍第七节课《OpenCompass司南--大模型评测实战》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCompass 大模型评测实战_哔哩哔哩_bilibili

https://github.com/InternLM/Tutorial/blob/camp2/opencompass/readme.md

InternStudio

一、通过评测促进模型发展

  • 面向未来拓展能力维度:评测体系需增加新能力维度(数学、复杂推理、逻辑推理、代码和智能体等),以全面评估模型性能。
  • 扎根通用能力聚焦垂直行业:在医疗、金融、法律等专业领域,评测需结合行业知识和规范,以评估模型的行业适用性。
  • 高质量中文基准:针对中文场景,需要开发能力准确评估其能力的中文评测基准,促进中文社区的大模型发展。
  • 性能评测反哺能力迭代:通过深入分析评测性能,探索模型能力形成机制,发现模型不足,研究针对性提升策略。

二、大语言模型评测中的挑战

  • 全面性
    • 大模型应用场景千变万化。
    • 模型能力演进迅速
    • 如何设计和构造可扩展的能力维度体系
  • 评测成本
    • 评测数十万道题需要大量算力资源
    • 基于人工打分的主观评测成本高昂
  • 数据污染
    • ​​​​​​​海量语料不可避免带来评测集污染
    • 亟需可靠的数据污染检测技术
    • 如何设计可动态更新高质量评测基准
  • 鲁棒性
    • ​​​​​​​大模型对提示词十分敏感
    • 多次采样情况下模型性能不稳定

三、如何评测大模型

1、根据模型类型的不同评测模型

  • 基座模型:不经过微调
  • 对话模型:
    • 指令数据有监督微调(SFT)
    • 人类偏好对齐(RLHF)
  • 公开权重的开源模型
    • 使用GPU/推理加速卡进行本地推理
  • API模型
    • 发送网络请求获取回复

2、根据评测本身的方式(客观评测与主观评测)

  • 客观评测
    • 问答题
    • 选择题
  • 主观评测:写一首诗
    • 人类评价
    • 模型评价

3、提示词工程

  • 做提示词工程,丰富题目,给模型做推理,然后做评测,评测结果更加真实反映模型性能。

  • 小样本学习:
  • 思维链技术:

4、长文本评测

  • 大海捞针:

汇集社区力量:工具-基准-榜单 三位一体

四、CompassRank:中立全面的性能榜单

  • 大模型
  • 多模态

五、CompassKit:大模型评测全栈工具链

  • 数据污染检查
    • 多种数据污染检测方法
    • 支持主流数据集污染检测
  • 更丰富的模型推理接入
    • 支持多个商业模型API
    • 支持多种推理后端
  • 长文本能力评测
    • 支持长文本大海捞针测试
    • 支持多个主流长文本评测基准
  • 中英文双语主观评测
    • 支持基于大模型评价的主观评测
    • 提供模型打分、模型对战多种能力
    • 灵活切换上百种评价模型

OpenCompass评测流水线

自定义任意模型和数据集,多模型和数据集进行切分,做到并行化(多GPU或任务),多种输出方式

  • VLMEvalKit:多模态评测工具
  • Code-Evaluator:代码评测工具
  • MixtralKit MoE:模型入门工具

六、CompassHub:高质量评测基准社区

开源开放,共建共享的大模型评测基准社区

七、能力维度全面升级

八、夯实基础:自研高质量大模型评测基准

  • MathBench:多层次数学能力评测基准(计算、小学、初中、高中、大学、CE平均分)
    • 梯度难度
    • 题目来源多种多样
    • 循环测评
  •  CIBench:代码解释器能力评测基准
    • 任务和软件的多样性
    • 评测基准具有高度可拓展性
    • 多难度等级设计(10轮以上交互)
  • T-Eval:大模型细粒度工具能力评测基准
    • 规划
    • 检索
    • 指令遵循
    • 推理
    • 理解
    • 评价

各行业垂直领域合作

九、实战

1、安装、

studio-conda -o internlm-base -t opencompass
source activate opencompass
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
pip install -r requirements.txt
2、数据准备
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

3、查看支持的数据集和模型

列出所有跟 InternLM 及 C-Eval 相关的配置

python tools/list_configs.py internlm ceval

4、启动评测

评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。 OpenCompass 默认并行启动评估过程。--debug 模式启动评估,并检查是否存在问题。

pip install protobuf
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU

 

python run.py
--datasets ceval_gen \ #数据集
--hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace 模型路径
--tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略)
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # 构建 tokenizer 的参数
--model-kwargs device_map='auto' trust_remote_code=True \  # 构建模型的参数
--max-seq-len 1024 \  # 模型可以接受的最大序列长度
--max-out-len 16 \  # 生成的最大 token 数
--batch-size 2  \  # 批量大小
--num-gpus 1  # 运行模型所需的 GPU 数量
--work-dir "xxxx/xxx" #结果保存路径,默认outputs/default
--reuse latest #指定时间戳,接着之前的时间戳去跑
--debug #debug模式显示,默认存在log文件夹下
python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True --model-kwargs trust_remote_code=True device_map='auto' --max-seq-len 1024 --max-out-len 16 --batch-size 2 --num-gpus 1 --debug

这篇关于第七节课《OpenCompass司南--大模型评测实战》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966655

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

4G/5G全网通! FiberHome烽火5G CPE Air路由器拆机评测

《4G/5G全网通!FiberHome烽火5GCPEAir路由器拆机评测》烽火5GCPE已经使用一段时间了,很多朋友想要知道这款路由器怎么样?今天我们就来看看拆机测评... 我想大家都听说过、了解过5G。 5G是具有高速率、低时延和大连接特点的新一代宽带移动通信技术,5G通讯设施是实现人机物互联的网络基础设