【中等】保研/考研408机试-动态规划1(01背包、完全背包、多重背包)

2024-05-07 05:36

本文主要是介绍【中等】保研/考研408机试-动态规划1(01背包、完全背包、多重背包),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背包问题基本上都是模板题,重点:弄熟多重背包模板

dp[j]=max(dp[j-v[i]]+w[i],dp[j])    //核心思路代码(一维数组版)

dp[i][j]=max(dp[i-1][j], dp[i-1][j-v[i]]+w[i])//二维数字版

一、 0-1背包

一般输入两个变量:体积(亦或者是重量)v和价值w

初始化好像不是必须的,如果出bug自己又搞不懂是哪里再加上吧

[NOIP2005]采药  登录—专业IT笔试面试备考平台_牛客网

#include <iostream>
#include <vector>
using namespace std;
int dp[1000];
int p[101];
int t[101];
int main() {int v,n;cin>>v>>n;for(int i=0;i<101;i++){p[i]=0;t[i]=0;}for(int i=0;i<100;i++){dp[i]=0;}for(int i=0;i<n;i++){cin>>t[i]>>p[i];}for(int i=0;i<n;i++){for(int j=v;j>=t[i];j--){   //注意是大于等于,有等于!这里错过好几次dp[j]=max(dp[j],dp[j-t[i]]+p[i]);}}cout<<dp[v];
}

 P1507 NASA的食物计划NASA的食物计划 - 洛谷

来个二维数组版的例子。

#include <iostream>
#include <vector>
using namespace std;
int dp[500][500];
int h1[401];
int t1[401];
int k1[501];
int main() {int h,t,n;cin>>h>>t>>n;//初始化 for(int i=0;i<400;i++){h1[i]=0;t1[i]=0;}for(int i=0;i<500;i++){k1[i]=0;}for(int i=0;i<n;i++){cin>>h1[i]>>t1[i]>>k1[i];}for(int i=0;i<n;i++){for(int j=h;j>=h1[i];j--){for(int k=t;k>=t1[i] ;k--){dp[j][k]=max(dp[j][k],dp[j-h1[i]][k-t1[i]]+k1[i]);}}}cout<<dp[h][t];   
}

二、 完全背包

一般输入两个变量:体积(亦或者是重量)v和价值w

完全背包的意思就是每个物品可以取无限次,0-1背包是每个物品只能取走一次。

完全背包例题:3. 完全背包问题 - AcWing题库

#include <iostream>
#include <vector>
#include<bits/stdc++.h> 
using namespace std;
int dp[1001];
int v1[1001];
int w[1001];
int main() {int n,v;cin>>n>>v;for(int i=0;i<n;i++){cin>>v1[i]>>w[i];}for(int i=0;i<n;i++){for(int j=v1[i];j<=v;j++){  //差别在这里dp[j]=max(dp[j],dp[j-v1[i]]+w[i]);}}cout<<dp[v];
}

注意:可以看出,0-1背包和完全背包的问题的解决方案差别不大,主要就是在for(int j=v……部分的差别。

 三、多重背包问题

一般输入两个变量:体积(亦或者是重量)v、价值w和数量s

背包问题中最难的了,结合了0-1背包和多重背包的特点,简单来说就是某个物品可以取s次,有了次数限制。

常规思路就是拆分成份,重新构成0-1背包问题。

例题4. 多重背包问题 I - AcWing题库

#include <iostream>
#include <vector>
#include<bits/stdc++.h> 
using namespace std;
int dp[1001];
int v1[1001];
int w[1001];
int s[1001];
int main() {int n,v;cin>>n>>v;for(int i=0;i<n;i++){cin>>v1[i]>>w[i]>>s[i];}for(int i=0;i<n;i++){while(s[i]!=0){ //监控数量for(int j=v;j>=v1[i];j--){  //0-1背包处理dp[j]=max(dp[j],dp[j-v1[i]]+w[i]);}s[i]--;}}cout<<dp[v];
}

可以看到,for(int j=v……这部分的处理和0-1背包的处理逻辑一样。就是在外面增加一个while监控数量的变化即可。整体还是在for(int i=0;i<n;i++){框架下。

上述的微小改进只适用于处理小范围数据集,数据集一大(一两千)就会超时,此时就需要改进算法了,参考下题:

数据量大的情况:5. 多重背包问题 II - AcWing题库

二进制优化是基于这样的事实:

任意正整数可以表示为2的幂之和。

利用这一点,我们可以将每种物品的数量拆分成几个二进制的组件,从而将多重背包问题转换为0-1背包问题的多个实例。

二进制拆分挺麻烦的……要加里面,我写了一版有的用例没有过,还需要再背2024年5月6日

#include <bits/stdc++.h>
using namespace std;
int dp[2102];
int v1[2101];
int w[2101];
int s[2001];int main() {int n,v;cin>>n>>v;for(int i=0;i<n;i++){cin>>v1[i]>>w[i]>>s[i];}for(int i=0;i<n;i++){if(s[i]*v1[i]>=v){ //份数乘以重量 大于 容量,采取完全背包。 for(int j=v1[i];j<=v;j++){dp[j]=max(dp[j],dp[j-v1[i]]+w[i]);}}else{// 二进制拆分,处理多重背包问题for(int k=1;s[i]>0;k=k*2){if(k>s[i]){// 当拆分块大于剩余数量时,调整k为剩余数量k=s[i];}int totalv=k*v1[i];int totalw=k*w[i];for(int j=v;j>=totalv;j--){//0-1背包处理 dp[j]=max(dp[j],dp[j-totalv]+totalw);}s[i]=s[i]-k;}}}cout<<dp[v];return 0;
}

四、分组背包问题 

分组背包问题:9. 分组背包问题 - AcWing题库

就是分组,每个组只能取一个背包。(这个模板没背过,下次记得背,2024年5月6日)

#include <bits/stdc++.h>
using namespace std;
int dp[102];
int v1[101];
int w[101];int main() {int n,v,z;cin>>n>>v;for(int i=0;i<n;i++){cin>>z;for(int j=0;j<z;j++){			cin>>v1[j]>>w[j];}for(int k=v;k>=0;k--){for(int j=0;j<z;j++){if(k>=v1[j]){dp[k]=max(dp[k],dp[k-v1[j]]+w[j]);	}}}}cout<<dp[v];return 0;
}

这篇关于【中等】保研/考研408机试-动态规划1(01背包、完全背包、多重背包)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966461

相关文章

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

poj2576(二维背包)

题意:n个人分成两组,两组人数只差小于1 , 并且体重只差最小 对于人数要求恰好装满,对于体重要求尽量多,一开始没做出来,看了下解题,按照自己的感觉写,然后a了 状态转移方程:dp[i][j] = max(dp[i][j],dp[i-1][j-c[k]]+c[k]);其中i表示人数,j表示背包容量,k表示输入的体重的 代码如下: #include<iostream>#include<

hdu2159(二维背包)

这是我的第一道二维背包题,没想到自己一下子就A了,但是代码写的比较乱,下面的代码是我有重新修改的 状态转移:dp[i][j] = max(dp[i][j], dp[i-1][j-c[z]]+v[z]); 其中dp[i][j]表示,打了i个怪物,消耗j的耐力值,所得到的最大经验值 代码如下: #include<iostream>#include<algorithm>#include<

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

uva 10130 简单背包

题意: 背包和 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>