【数据可视化-02】Seaborn图形实战宝典

2024-05-07 01:04

本文主要是介绍【数据可视化-02】Seaborn图形实战宝典,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Seaborn介绍

  Seaborn是一个基于Python的数据可视化库,它建立在matplotlib的基础之上,为统计数据的可视化提供了高级接口。Seaborn通过简洁美观的默认样式和绘图类型,使数据可视化变得更加简单和直观。它特别适用于那些想要创建具有吸引力且信息丰富的统计图形的数据科学家和数据分析师。

  Seaborn的主要特点包括:

  1. 集成性:Seaborn与pandas数据结构紧密结合,使得数据分析和可视化可以无缝衔接。
  2. 美观性:Seaborn提供了精心设计的默认样式和调色板,使得图形更具吸引力。
  3. 统计绘图:Seaborn提供了多种统计图形,如箱线图、小提琴图、热力图等,这些图形可以直观地展示数据的分布和关系。
  4. 数据分布可视化:通过核密度估计(KDE)和联合图(jointplot)等工具,Seaborn可以方便地展示数据的分布和相关性。
  5. 高度可定制性:虽然Seaborn提供了美观的默认样式,但用户仍然可以轻松地调整图形的各个方面,以满足特定的需求。

  seaborn官方给出为了常用图形的案列,具体参看seaborn官方示例文档
在这里插入图片描述

  Seaborn是一个基于matplotlib的数据可视化Python库,它提供了一种高级界面,用于绘制有吸引力的统计图形。下面是一些使用Seaborn绘制常见图形的示例:
  因为seaborn并是一个绘图库,它与DataFrame对象有很好的集成。

import pandas as pd
import seaborn as sns 
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
sns.set(style="white",font_scale=1.5)
sns.set(rc={"axes.facecolor":"#FFFAF0","figure.facecolor":"#FFFAF0"})
sns.set_context("poster",font_scale = .7)
import warnings
warnings.filterwarnings('ignore')
from pylab import mpl
mpl.rcParams['font.sans-serif'] = ['Microsoft YaHei'] # 指定默认字体:解决plot不能显示中文问题
mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题pd.set_option("display.max.columns",None)iris = sns.load_dataset('iris')
tips = sns.load_dataset('tips')
titanic = sns.load_dataset('titanic') 

一、 折线图 (Line Plot) lineplot线型图

sns.lineplot(x='sepal_length',y='sepal_width',data=iris)
plt.title("iris中sepal_length和sepal_width关系图")
#进行分组
sns.lineplot(x='sepal_length',y='sepal_width',data=iris,hue='species')
#按性别分组
sns.lineplot(x='total_bill',y='tip',data=tips,hue='sex')# style = 'time'
sns.lineplot(x='total_bill',y='tip',data=tips,hue='sex',size='smoker',style='time')

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、 直方图 (Histogram)

   histplot和displot在显示一个维度时,效果时一致的;

# 使用Seaborn绘制直方图
sns.histplot(tips['tip'], bins=30)#kde 是否显示数据分布曲线 默认值是False
#设置风格样式
sns.set(style='white')
sns.displot(tips['tip'],bins=30,kde=True)

在这里插入图片描述
在这里插入图片描述

三、 饼图 (Pie Chart)

  虽然Seaborn没有直接的饼图函数,但你可以使用matplotlib来绘制:

# 计算每个类别的百分比
sizes = iris['species'].value_counts(normalize=True) * 100
labels = sizes.index# 使用matplotlib绘制饼图
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=140)
plt.axis('equal')  # 确保饼图是圆的
plt.show()

在这里插入图片描述

四、 散点图 (Scatter Plot)

sns.scatterplot(data=tips,x='total_bill',y='tip')
#size参数指定点的大小
sns.scatterplot(data=tips,x='total_bill',y='tip',size='size')
#hue 按是否吸烟进行分组
sns.scatterplot(data=tips,x='total_bill',y='tip',size='size',hue='smoker')
#保存图片
from matplotlib import pyplot as plt
sns.scatterplot(data=tips,x='total_bill',y='tip',size='size',hue='smoker',style='time')
plt.savefig('scatterplot.jpg')

在这里插入图片描述
在这里插入图片描述

五、 柱状图/条形图barplot 堆叠柱状图 (Stacked Bar Chart)

# 使用Seaborn绘制柱状图
#绘制条形图  barplot
sns.barplot(x='sex',y='survived',data=titanic)
#按船舱分组
sns.barplot(x='sex',y='survived',data=titanic,hue='class')**sns.barplot(data=df, x='category', y='value')
plt.show()

在这里插入图片描述
在这里插入图片描述

# importing all required librariesimport pandas as pdimport seaborn as snsimport matplotlib.pyplot as plt# creating dataframedf = pd.DataFrame({'X': [1, 2, 3],'Y': [3, 4, 5],'Z': [2, 1, 2]})# creating subplotsax = plt.subplots()# plotting columnsax = sns.barplot(x=df["X"], y=df["Y"], color='b')ax = sns.barplot(x=df["X"], y=df["Z"], color='r')# renaming the axesax.set(xlabel="x-axis", ylabel="y-axis")# visualizing illustrationplt.show()

在这里插入图片描述

六、 箱形图 (Box Plot)

#绘制盒图 boxplot
sns.boxplot(x='day',y='total_bill',data=tips)
#按时间time分组
sns.boxplot(x='day',y='total_bill',data=tips,hue='time')

在这里插入图片描述
在这里插入图片描述

七、 小提琴图 (Violin Plot)

  小提琴图是箱图和密度图的一种结合图形。左右越宽代表当前数据 量越密集。

sns.violinplot(x='day',y='total_bill',data=tips)
#按性别分组
sns.violinplot(x='day',y='total_bill',data=tips,hue='sex')
#男生女生合到一块
sns.violinplot(x='day',y='total_bill',data=tips,hue='sex',split=True)
#去掉中间线
sns.violinplot(x='day',y='total_bill',data=tips,hue='sex',split=True,inner=None)

在这里插入图片描述
在这里插入图片描述

八、 ** stripplot(分布散点图)**


#绘制分布散点图  stripplot()
sns.stripplot(x='day',y='total_bill',data=tips)
#jitter 震动 默认是True
sns.stripplot(x='day',y='total_bill',data=tips,jitter=False)

在这里插入图片描述

九、 swarmplot(分簇散点图)

sns.swarmplot(x='day',y='total_bill',data=tips)
#按性别分组
sns.swarmplot(x='day',y='total_bill',data=tips,hue='sex')
#按时间分组
sns.swarmplot(x='day',y='total_bill',data=tips,hue='time')

在这里插入图片描述

十、 热力图 (Heatmap)

   热力图(heatmap)是以矩阵的形式表示,数据值在图形中以颜色 的深浅来表示数量的多少,并可以快速到到大值的与最小值所在位 置。在机器学习的分类中经常用来作混淆矩阵的比较。

#导入模块
import numpy as np
import seaborn as sns
#加载航班数据
flights = sns.load_dataset('flights')
#pivot 是DataFrame中的一个函数
data = flights.pivot('month','year','passengers')
#绘制热力图
sns.heatmap(data=data)
#参数 annot :True
sns.heatmap(data=data,annot=True)
#以整数的形式显示
sns.heatmap(data=data,annot=True,fmt='d')
#去掉右侧图例
sns.heatmap(data=data,annot=True,fmt='d',linewidths=0.5,cbar=False)
#修改色系
sns.heatmap(data=data,annot=True,fmt='d',linewidths=0.5,cbar=False,cmap='YlGnBu')

在这里插入图片描述

十一、 配对图 (Pair Plot)

import seaborn as sns
import matplotlib.pyplot as pltdf = sns.load_dataset('iris')# 绘制配对图
sns.pairplot(df, hue='species')
plt.show()

在这里插入图片描述

十二、 回归分析图

  线性回归图通过大量数据找到模型拟合线性回归线。

#lmplot()
sns.lmplot(data=iris,x='petal_length',y='petal_width')
#regplot()
sns.regplot(data=iris,x='petal_length',y='petal_width')

在这里插入图片描述

十三、 jointplot

  joint意为联合,顾名思义jointplot是一个双变量分布图表接口。绘图结果主要有三部分:绘图主体用于表达两个变量对应的散点图分布,在其上侧和右侧分别体现2个变量的直方图分布
在这里插入图片描述

十四、 pointplot点图

#加载模块
import seaborn as sns
#加载数据
titanic = sns.load_dataset('titanic')
#绘制点图
sns.pointplot(data=titanic,x='sex',y='survived')
#hue 进行分组
sns.pointplot(data=titanic,x='sex',y='survived',hue='class')

在这里插入图片描述

Seaborn总结

  Seaborn是一个功能强大且易于使用的数据可视化库,它特别适合数据科学家和数据分析师使用。通过Seaborn,用户可以轻松创建各种统计图形,以直观地展示数据的分布、关系和趋势。Seaborn与pandas的紧密结合使得数据分析和可视化可以无缝衔接,从而提高了工作效率。

  此外,Seaborn的默认样式和调色板使得图形更具吸引力,同时也提供了高度的可定制性,用户可以根据需要调整图形的各个方面。这些特点使得Seaborn成为数据可视化领域的佼佼者之一。

  然而,需要注意的是,虽然Seaborn提供了许多高级功能,但它仍然是基于matplotlib构建的。因此,对于想要深入了解数据可视化底层原理的用户来说,掌握matplotlib仍然是非常重要的。同时,Seaborn的某些高级功能可能需要一定的统计学知识才能充分理解和使用。

  总之,Seaborn是一个强大而易于使用的数据可视化库,它可以帮助用户轻松地创建各种统计图形,以直观地展示数据的分布、关系和趋势。无论是数据科学家还是数据分析师,都应该掌握Seaborn的基本用法和高级功能,以提高数据分析和可视化的效率和质量。

这篇关于【数据可视化-02】Seaborn图形实战宝典的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/965888

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi