[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解

本文主要是介绍[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.最后一块石头的重量
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.数据流中的第 K 大元素
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 3.前K个高频单词
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 4.数据流的中位数
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


1.最后一块石头的重量

1.题目链接

  • 最后一块石头的重量

2.算法原理详解

  • 思路:利用大根堆
    • 将所有的⽯头放⼊⼤根堆中
    • 每次拿出前两个堆顶元素粉碎⼀下,如果还有剩余,就将剩余的⽯头继续放⼊堆中

3.代码实现

int LastStoneWeight(vector<int>& stones) 
{priority_queue<int> heap; // STL默认大根堆for(auto& x : stones){heap.push(x);}// 模拟过程while(heap.size() > 1){int a = heap.top();heap.pop();int b = heap.top();heap.pop();if(a > b){heap.push(a - b);}}return heap.size() ? heap.top() : 0;
}

2.数据流中的第 K 大元素

1.题目链接

  • 数据流中的第 K 大元素

2.算法原理详解

  • 本题为TOP-K的运用
  • TOP-K问题,一般用一下两种方法来解决
    • O ( N ∗ l o g K ) O(N*logK) O(NlogK)
    • 快速选择算法 O ( N ) O(N) O(N)
  • 用堆解决TOP-K问题
    • 用数据集合中前K个元素来建堆
      • 前k个最大的元素:建小堆
      • 前k个最小的元素:建大堆
    • 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
    • 走完以后,堆里面的k个数,就是最大的前k个
  • 流程
    • 创建一个大小为k的堆(大根堆/小根堆)
    • 循环
      • 依次进堆
      • 判断堆的大小是否超过k
  • 如何判断是否用大根堆还是小根堆,为什么呢?
    • TOP-K-MAX:建小堆
      • 依次进堆,当heap.size() > k时,弹出堆顶元素
      • 因为堆顶元素是最小的,绝对不会是TOP-K-MAX
    • TOP-K-MIN:建大堆
      • 依次进堆,当heap.size() > k时,弹出堆顶元素
      • 因为堆顶元素是最大的,绝对不会是TOP-K-MIN

3.代码实现

class KthLargest 
{// 创建一个大小为k的小根堆priority_queue<int, vector<int>, greater<int>> heap;int _k = 0;
public:KthLargest(int k, vector<int>& nums) {_k = k;for(auto& x : nums){heap.push(x);if(heap.size() > _k){heap.pop();}}}int add(int val) {heap.push(val);if(heap.size() > _k){heap.pop();}return heap.top();}
};

3.前K个高频单词

1.题目链接

  • 前K个高频单词

2.算法原理详解

  • 思路:利用"堆"来解决TOP-K问题
    • 预处理原始的字符串数组
      • 哈希表统计每一个单词出现的频次
    • 创建一个大小为k的堆
      • 频次:小根堆
      • 字典序(频次相同的时候):大根堆
    • 循环
      • 让元素一次进堆
      • 判断
    • 提取结果
      • 把数组逆序

3.代码实现

 class Solution 
{typedef pair<string, int> PSI;struct Cmp{bool operator()(PSI& a, PSI& b){// 频次相同,字典序按大根堆排序if(a.second == b.second){return a.first < b.first;}// 频次按小根堆排序return a.second > b.second;}};
public:vector<string> TopKFrequent(vector<string>& words, int k) {// 统计每个单词出现的次数unordered_map<string, int> hash;for(auto& str : words){hash[str]++;}// 创建一个大小为k的堆priority_queue<PSI, vector<PSI>, Cmp> heap;// TOP-Kfor(auto& psi : hash){heap.push(psi);if(heap.size() > k){heap.pop();}}// 提取结果,逆序heapvector<string> ret(k);for(int i = k - 1; i >= 0; i--){ret[i] = heap.top().first;heap.pop();}return ret;}
};

4.数据流的中位数

1.题目链接

  • 数据流的中位数

2.算法原理详解

  • 思路一:直接sort

    • 时间复杂度:
      • add() O ( N ∗ l o g N ) O(N*logN) O(NlogN)
      • find() O ( 1 ) O(1) O(1)
    • 每次add(),都sort一遍,时间复杂度很恐怖
      请添加图片描述
  • 思路二:插入排序的思想

    • 时间复杂度:
      • add() O ( N ) O(N) O(N)
      • find() O ( 1 ) O(1) O(1)
    • 每次add(),都在原数据基础上进行插入排序,时间复杂度有所改善
      请添加图片描述
  • 思路三:利用大小堆来维护数据流中位数

    • 此问题时关于**「堆」的⼀个「经典应⽤」**
    • 时间复杂度:
      • add() O ( l o g N ) O(logN) O(logN)
      • find() O ( 1 ) O(1) O(1)
    • 将整个数组「按照⼤⼩」平分成两部分(如果不能平分,那就让较⼩部分的元素多⼀个)
      • m == n
      • m > n -> m == n + 1
    • 将左侧部分放⼊「⼤根堆」中,然后将右侧元素放⼊「⼩根堆」中
    • 这样就能在 O ( 1 ) O(1) O(1)的时间内拿到中间的⼀个数或者两个数,进⽽求的平均数
      请添加图片描述
  • 细节add()时,如何维护m == n || m > n -> m == n + 1

    • m == n
      请添加图片描述

    • m > n -> m == n + 1
      请添加图片描述


3.代码实现

class MedianFinder 
{priority_queue<int> left; // 大根堆priority_queue<int, vector<int>, greater<int>> right; // 小根堆
public:MedianFinder() {}void AddNum(int num) {if(left.size() == right.size()){if(left.empty() || num <= left.top()){left.push(num);}else{right.push(num);left.push(right.top());right.pop();}}else{if(num <= left.top()){left.push(num);right.push(left.top());left.pop();}else{right.push(num);}}}double FindMedian() {if(left.size() == right.size()){return (left.top() + right.top()) / 2.0;}else{return left.top();}}
};

这篇关于[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961790

相关文章

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

SQL Server中行转列方法详细讲解

《SQLServer中行转列方法详细讲解》SQL行转列、列转行可以帮助我们更方便地处理数据,生成需要的报表和结果集,:本文主要介绍SQLServer中行转列方法的相关资料,需要的朋友可以参考下... 目录前言一、为什么需要行转列二、行转列的基本概念三、使用PIVOT运算符进行行转列1.创建示例数据表并插入数

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里

Java 队列Queue从原理到实战指南

《Java队列Queue从原理到实战指南》本文介绍了Java中队列(Queue)的底层实现、常见方法及其区别,通过LinkedList和ArrayDeque的实现,以及循环队列的概念,展示了如何高效... 目录一、队列的认识队列的底层与集合框架常见的队列方法插入元素方法对比(add和offer)移除元素方法

JAVA SpringBoot集成Jasypt进行加密、解密的详细过程

《JAVASpringBoot集成Jasypt进行加密、解密的详细过程》文章详细介绍了如何在SpringBoot项目中集成Jasypt进行加密和解密,包括Jasypt简介、如何添加依赖、配置加密密钥... 目录Java (SpringBoot) 集成 Jasypt 进行加密、解密 - 详细教程一、Jasyp

Java 操作 MinIO详细步骤

《Java操作MinIO详细步骤》本文详细介绍了如何使用Java操作MinIO,涵盖了从环境准备、核心API详解到实战场景的全过程,文章从基础的桶和对象操作开始,到大文件分片上传、预签名URL生成... 目录Java 操作 MinIO 全指南:从 API 详解到实战场景引言:为什么选择 MinIO?一、环境

Redis的安全机制详细介绍及配置方法

《Redis的安全机制详细介绍及配置方法》本文介绍Redis安全机制的配置方法,包括绑定IP地址、设置密码、保护模式、禁用危险命令、防火墙限制、TLS加密、客户端连接限制、最大内存使用和日志审计等,通... 目录1. 绑定 IP 地址2. 设置密码3. 保护模式4. 禁用危险命令5. 通过防火墙限制访问6.

VS Code中的Python代码格式化插件示例讲解

《VSCode中的Python代码格式化插件示例讲解》在Java开发过程中,代码的规范性和可读性至关重要,一个团队中如果每个开发者的代码风格各异,会给代码的维护、审查和协作带来极大的困难,这篇文章主... 目录前言如何安装与配置使用建议与技巧如何选择总结前言在 VS Code 中,有几款非常出色的 pyt

Python操作Excel的实用工具与库openpyxl/pandas的详细指南

《Python操作Excel的实用工具与库openpyxl/pandas的详细指南》在日常数据处理工作中,Excel是最常见的数据文件格式之一,本文将带你了解openpyxl和pandas的核心用法,... 目录一、openpyxl:原生 Excel 文件操作库1. 安装 openpyxl2. 创建 Exc