[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解

本文主要是介绍[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.最后一块石头的重量
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.数据流中的第 K 大元素
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 3.前K个高频单词
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 4.数据流的中位数
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


1.最后一块石头的重量

1.题目链接

  • 最后一块石头的重量

2.算法原理详解

  • 思路:利用大根堆
    • 将所有的⽯头放⼊⼤根堆中
    • 每次拿出前两个堆顶元素粉碎⼀下,如果还有剩余,就将剩余的⽯头继续放⼊堆中

3.代码实现

int LastStoneWeight(vector<int>& stones) 
{priority_queue<int> heap; // STL默认大根堆for(auto& x : stones){heap.push(x);}// 模拟过程while(heap.size() > 1){int a = heap.top();heap.pop();int b = heap.top();heap.pop();if(a > b){heap.push(a - b);}}return heap.size() ? heap.top() : 0;
}

2.数据流中的第 K 大元素

1.题目链接

  • 数据流中的第 K 大元素

2.算法原理详解

  • 本题为TOP-K的运用
  • TOP-K问题,一般用一下两种方法来解决
    • O ( N ∗ l o g K ) O(N*logK) O(NlogK)
    • 快速选择算法 O ( N ) O(N) O(N)
  • 用堆解决TOP-K问题
    • 用数据集合中前K个元素来建堆
      • 前k个最大的元素:建小堆
      • 前k个最小的元素:建大堆
    • 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
    • 走完以后,堆里面的k个数,就是最大的前k个
  • 流程
    • 创建一个大小为k的堆(大根堆/小根堆)
    • 循环
      • 依次进堆
      • 判断堆的大小是否超过k
  • 如何判断是否用大根堆还是小根堆,为什么呢?
    • TOP-K-MAX:建小堆
      • 依次进堆,当heap.size() > k时,弹出堆顶元素
      • 因为堆顶元素是最小的,绝对不会是TOP-K-MAX
    • TOP-K-MIN:建大堆
      • 依次进堆,当heap.size() > k时,弹出堆顶元素
      • 因为堆顶元素是最大的,绝对不会是TOP-K-MIN

3.代码实现

class KthLargest 
{// 创建一个大小为k的小根堆priority_queue<int, vector<int>, greater<int>> heap;int _k = 0;
public:KthLargest(int k, vector<int>& nums) {_k = k;for(auto& x : nums){heap.push(x);if(heap.size() > _k){heap.pop();}}}int add(int val) {heap.push(val);if(heap.size() > _k){heap.pop();}return heap.top();}
};

3.前K个高频单词

1.题目链接

  • 前K个高频单词

2.算法原理详解

  • 思路:利用"堆"来解决TOP-K问题
    • 预处理原始的字符串数组
      • 哈希表统计每一个单词出现的频次
    • 创建一个大小为k的堆
      • 频次:小根堆
      • 字典序(频次相同的时候):大根堆
    • 循环
      • 让元素一次进堆
      • 判断
    • 提取结果
      • 把数组逆序

3.代码实现

 class Solution 
{typedef pair<string, int> PSI;struct Cmp{bool operator()(PSI& a, PSI& b){// 频次相同,字典序按大根堆排序if(a.second == b.second){return a.first < b.first;}// 频次按小根堆排序return a.second > b.second;}};
public:vector<string> TopKFrequent(vector<string>& words, int k) {// 统计每个单词出现的次数unordered_map<string, int> hash;for(auto& str : words){hash[str]++;}// 创建一个大小为k的堆priority_queue<PSI, vector<PSI>, Cmp> heap;// TOP-Kfor(auto& psi : hash){heap.push(psi);if(heap.size() > k){heap.pop();}}// 提取结果,逆序heapvector<string> ret(k);for(int i = k - 1; i >= 0; i--){ret[i] = heap.top().first;heap.pop();}return ret;}
};

4.数据流的中位数

1.题目链接

  • 数据流的中位数

2.算法原理详解

  • 思路一:直接sort

    • 时间复杂度:
      • add() O ( N ∗ l o g N ) O(N*logN) O(NlogN)
      • find() O ( 1 ) O(1) O(1)
    • 每次add(),都sort一遍,时间复杂度很恐怖
      请添加图片描述
  • 思路二:插入排序的思想

    • 时间复杂度:
      • add() O ( N ) O(N) O(N)
      • find() O ( 1 ) O(1) O(1)
    • 每次add(),都在原数据基础上进行插入排序,时间复杂度有所改善
      请添加图片描述
  • 思路三:利用大小堆来维护数据流中位数

    • 此问题时关于**「堆」的⼀个「经典应⽤」**
    • 时间复杂度:
      • add() O ( l o g N ) O(logN) O(logN)
      • find() O ( 1 ) O(1) O(1)
    • 将整个数组「按照⼤⼩」平分成两部分(如果不能平分,那就让较⼩部分的元素多⼀个)
      • m == n
      • m > n -> m == n + 1
    • 将左侧部分放⼊「⼤根堆」中,然后将右侧元素放⼊「⼩根堆」中
    • 这样就能在 O ( 1 ) O(1) O(1)的时间内拿到中间的⼀个数或者两个数,进⽽求的平均数
      请添加图片描述
  • 细节add()时,如何维护m == n || m > n -> m == n + 1

    • m == n
      请添加图片描述

    • m > n -> m == n + 1
      请添加图片描述


3.代码实现

class MedianFinder 
{priority_queue<int> left; // 大根堆priority_queue<int, vector<int>, greater<int>> right; // 小根堆
public:MedianFinder() {}void AddNum(int num) {if(left.size() == right.size()){if(left.empty() || num <= left.top()){left.push(num);}else{right.push(num);left.push(right.top());right.pop();}}else{if(num <= left.top()){left.push(num);right.push(left.top());left.pop();}else{right.push(num);}}}double FindMedian() {if(left.size() == right.size()){return (left.top() + right.top()) / 2.0;}else{return left.top();}}
};

这篇关于[Algorithm][堆][优先级队列][最后一块石头的重量][数据流中的第K大元素][前K个高频单词][数据流中的中位数]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/961790

相关文章

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Goland debug失效详细解决步骤(合集)

《Golanddebug失效详细解决步骤(合集)》今天用Goland开发时,打断点,以debug方式运行,发现程序并没有断住,程序跳过了断点,直接运行结束,网上搜寻了大量文章,最后得以解决,特此在这... 目录Bug:Goland debug失效详细解决步骤【合集】情况一:Go或Goland架构不对情况二:

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

Springboot 中使用Sentinel的详细步骤

《Springboot中使用Sentinel的详细步骤》文章介绍了如何在SpringBoot中使用Sentinel进行限流和熔断降级,首先添加依赖,配置Sentinel控制台地址,定义受保护的资源,... 目录步骤 1: 添加 Sentinel 依赖步骤 2: 配置 Sentinel步骤 3: 定义受保护的