AD中如何器件带动导线一起旋转

2024-05-04 13:52

本文主要是介绍AD中如何器件带动导线一起旋转,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

选中器件和导线,右键点击联合,从选中的器件生成联合

点击屏幕右上角的小齿轮(设置按钮),选择下图所示的旋转步进为45度(或其他),器件拖拽设置为Connected Tracks

之后就可以按住空格键旋转器件并带动导线一起旋转了,这在BGA扇孔的时候很好用。

这篇关于AD中如何器件带动导线一起旋转的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959345

相关文章

poj 2187 凸包or旋转qia壳法

题意: 给n(50000)个点,求这些点与点之间距离最大的距离。 解析: 先求凸包然后暴力。 或者旋转卡壳大法。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <s

Android 10.0 mtk平板camera2横屏预览旋转90度横屏拍照图片旋转90度功能实现

1.前言 在10.0的系统rom定制化开发中,在进行一些平板等默认横屏的设备开发的过程中,需要在进入camera2的 时候,默认预览图像也是需要横屏显示的,在上一篇已经实现了横屏预览功能,然后发现横屏预览后,拍照保存的图片 依然是竖屏的,所以说同样需要将图片也保存为横屏图标了,所以就需要看下mtk的camera2的相关横屏保存图片功能, 如何实现实现横屏保存图片功能 如图所示: 2.mtk

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

跟我一起玩《linux内核设计的艺术》第1章(四)——from setup.s to head.s,这回一定让main滚出来!(已解封)

看到书上1.3的大标题,以为马上就要见着main了,其实啊,还早着呢,光看setup.s和head.s的代码量就知道,跟bootsect.s没有可比性,真多……这确实需要包括我在内的大家多一些耐心,相信见着main后,大家的信心和干劲会上一个台阶,加油! 既然上篇已经玩转gdb,接下来的讲解肯定是边调试边分析书上的内容,纯理论讲解其实我并不在行。 setup.s: 目标:争取把setup.

二维旋转公式

二维旋转公式 ros的tf工具包可以很方便的实现任意坐标系之间的坐标转换。但是,如果只是想简单的测试想法,而又不想编写过于庞杂的代码,考虑自己写二维旋转的函数。而与二维旋转问题对偶的另一个问题便是二维坐标系旋转变换。这两个问题的形式基本一样,只是旋转的角度相差一个负号。就是这个容易搞混,所以做个笔记,以备查用。 1. 二维旋转公式(算法) 而(此文只针对二维)旋转则是表示某一坐标点 ( x

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

算法复杂度 —— 数据结构前言、算法效率、时间复杂度、空间复杂度、常见复杂度对比、复杂度算法题(旋转数组)

目录 一、数据结构前言 1、数据结构 2、算法 3、学习方法 二、 算法效率 引入概念:算法复杂度  三、时间复杂度 1、大O的渐进表示法 2、时间复杂度计算示例  四、空间复杂度 计算示例:空间复杂度 五、常见复杂度对比 六、复杂度算法题(旋转数组) 1、思路1 2、思路2 3、思路3 一、数据结构前言 1、数据结构         数据结构(D

计算几何之向量旋转

实际做题中我们可能会遇到很多有关及计算几何的问题,其中有一类问题就是向量的旋转问题,下面我们来具体探讨一下有关旋转的问题。 首先我们先把问题简化一下,我们先研究一个点绕另一个点旋转一定角度的问题。已知A点坐标(x1,y1),B点坐标(x2,y2),我们需要求得A点绕着B点旋转θ度后的位置。 A点绕B点旋转θ角度后得到的点,问题是我们要如何才能得到A' 点的坐标。(向逆时针方向旋转角度正,

物联网——DMA+AD多通道

DMA简介 存储器映像 某些数据在运行时不会发生变化,则设置为常量,存在Flash存储器中,节省运行内存的空间 DMA结构图 DMA访问权限高于cpu 结构要素 软件触发源:存储器到存储器传输完成后,计数器清零 硬件触发源:ADC、定时器、串口 重写计数器时,需关闭DMA DMA请求 数据宽度与对齐 目标宽度小于传输带宽:高位补零,反之,舍弃高位 数据转运与D

红黑树的旋转

红黑树的基本性质 红黑树与普通的二叉搜索树不同,它在每个节点上附加了一个额外的属性——颜色,该颜色可以是红色或黑色。通过引入这些颜色,红黑树能够维持以下 5 个基本性质,以确保树的平衡性: 每个节点是红色或黑色。根节点是黑色。所有叶子节点(NIL 节点)是黑色。如果一个节点是红色的,那么它的两个子节点都是黑色的(即,红色节点不能有红色子节点)。从任一节点到其每个叶子节点的所有路径上都包含相同数