R语言数据探索与分析-运用时间序列预测模型对成都市API进行预测分析

本文主要是介绍R语言数据探索与分析-运用时间序列预测模型对成都市API进行预测分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、研究背景

“绿水青山就是金山银山,要让绿水青山变成金山银山”让人们深刻的意识到环境的重要性。与此同时,由于现代生活水平的不断提高,所带来的环境污染也不断增多,空气以及环境的污染带来了越来越多的疾病,深刻的影响着人们的身体健康。

成都作为四川的省会城市,宜居性是外来人口及本地人口决定是否留下的最重要的因素之一。宜居性除了物价、房价等经济影响因素之外,还有十分重要的一项就是环境,即空气质量的好坏。但是由于给定的数据集中,针对2000-2004年该城市每日的评价空气质量的评价指标只有API(空气污染指数Air Pollution Index,2012年上半年出台规定,将用空气质量指数(AQI)替代原有的空气污染指数(API))。

故本文根据成都市2000-2004年的成都市空气质量指数API构建了相应的ARIMA模型对成都市API进行预测,一方面能够给人们提供宜居性的参考,另一方面也能够对于政府治理环境提供一定依据与环境治理方向。

二、实证分析

本次数据分析的数据来源于全球暖化数据集中的中国城市空气质量日报表(日)的数据,得到数据后,对数据进行了相应的筛选,其数据展示如下:

1 成都市2000-2004年的API历史数据

Data

AirQualityLevel

AQI

2000-6-5

83

2000-6-6

56

2000-6-7

72

……

……

……

2004-1-9

90

API的描述性统计分析

表3  API的描述性统计

Min.

1stQu.

Median

Mean

3rdQu.

Max.

22.00

71.00

84.00

83.36

94.00

198.00

从表3可以看出,对成都市API进行了描述性统计,得到了最大最小值,均值以及1/4分位数和3/4分位数。且下图1画出了四川省成都市2000-6-5至2004-1-9的API的时序图。

library(aTSA)
library(forecast)
library(openxlsx)
library(lmtest)
library(zoo)data<- read.xlsx("成都市API .xlsx", sheet = 1)
datasummary(API)
plot(API,main = "成都市2000-2004年API指数",xlab = "日期",ylab="API")

ARIMA模型的构建

进行ARIMA模型构建之前,要对时间序列数据纯随机性和平稳性检验。可以判断数据是否具有建模的价值以及是否适合ARIMA模型。下面对天气质量指数AQI进行纯随机性检验和平稳性检验结果如下表2和表3:

表4  纯随机检验

滞后期数

卡方统计量

P值

滞后6期P值

1158.9

0.000

滞后12期P值

1526.3

0.000

表5  平稳性检验

检验形式

no drift no trend

with drift no trend

with drift and trend

ADF统计量

-2.26

-6.28

-6.65

对应P值

0.02

0.01

0.01

#白噪声检验
for(i in 1:2) print(Box.test(API,type = "Ljung-Box",lag=6*i))#绘制自相关图和偏自相关图
acf(API)
pacf(API)adf.test(API,3)

画出API的自相关图和偏自相关图:

下面进行自动定阶的函数,计算得到模型应该采用ARIMA(2,0,0),拟合得到模型系数:

表  模型拟合系数

Coefficients:

ar1

ar2

intercept

0.7613

-0.1172

93.5098

s.e.

0.1041

0.1236

6.6908

sigma^2 estimated as  527.9:log likelihood=--423.79 , aic=855.59

对模型的系数进行检验:

表7 模型系数检验

系数

ar1

ar2

p值

0.00

0.00

在0.01 的显著性水平下,所有系数都通过了检验,下面进行残差检验:

表8  残差纯随机检验

滞后期数

卡方统计量

P值

滞后6期P值

7.8853

0.2466

滞后12期P值

26.286

0.0098

在0.05的显著性水平下,可以看出滞后6期的残差均是白噪音,说明模型拟合的效果良好。

最后进行预测,预测30期,即未来一个月的空气质量数据,得到的整体拟合和预测图如下:

#个性化输出预测图
L1<-x.fore$fitted-1.96*sqrt(x.fit$sigma2)
U1<-x.fore$fitted+1.96*sqrt(x.fit$sigma2)
L2<-ts(x.fore$lower[,2])
U2<-ts(x.fore$upper[,2])
c1<-min(API,L1,L2)
c2<-max(API,L2,U2)
plot(API,type = "p",pch=8,ylim = c(c1,c2))
lines(x.fore$fitted,col=2,lwd=2)
lines(x.fore$mean,col=2,lwd=2)
lines(L1,col=4,lty=2)
lines(L2,col=4,lty=2)
lines(U1,col=4,lty=2)
lines(U2,col=4,lty=2)

三、结论

就我国随着经济发展与工业化发展所带来的空气质量污染问题本文通过ARIMA预测模型对空气质量指数进行分析和预测研究在进行空气质量指数预测时我们发现通过ARIMA模型可以对其进行较为良好的预测

这篇关于R语言数据探索与分析-运用时间序列预测模型对成都市API进行预测分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958678

相关文章

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

使用Go语言开发一个命令行文件管理工具

《使用Go语言开发一个命令行文件管理工具》这篇文章主要为大家详细介绍了如何使用Go语言开发一款命令行文件管理工具,支持批量重命名,删除,创建,移动文件,需要的小伙伴可以了解下... 目录一、工具功能一览二、核心代码解析1. 主程序结构2. 批量重命名3. 批量删除4. 创建文件/目录5. 批量移动三、如何安

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景