图像处理1,灰度,data,for循环批处理图片,图片属性查看,图片单通道查看,椒盐噪声的生成,滤波处理,图像分割

本文主要是介绍图像处理1,灰度,data,for循环批处理图片,图片属性查看,图片单通道查看,椒盐噪声的生成,滤波处理,图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像处理1

  • 灰度处理
  • data库的使用
  • for循环批处理图像
  • 对图像属性的查看
    • 图片类型
    • 图片尺寸
    • 图片宽度
    • 图像高度
    • 通道数
    • 总像素个数
    • 最大像素值
    • 最小像素值,像素平均值
    • 图像点像素值
  • for循环分别显示图像rgb通道
  • 椒盐噪声的生成
  • 中值滤波处理
  • 高斯模糊处理
  • 图像切割

灰度处理

from skimage import io
a = 'tuxian.jpg'
img = io.imread(a,as_gray=True)
io.imshow(img)
io.show()

在这里插入图片描述
这段代码使用Python中的skimage库来读取名为"tuxian.jpg"的图像文件赋值给a,并将其以灰度图像的形式加载到变量img中。然后使用skimage库中的io.imshow()函数显示图像,最后使用io.show()函数将图像显示在屏幕上。

data库的使用

from skimage import io, data
img = data.chelsea()
io.imshow(img)
io.show()

在这里插入图片描述
这里使用了data.chelsea()将data库中的小猫图片调用了出来

from skimage import data_dir
print(data_dir)

这段代码使用Python中的skimage库,并导入其中的data_dir模块。然后使用print语句打印出data_dir模块的值,该值表示skimage库中存储数据文件的目录路径。

from skimage import io, data
img = data.chelsea()
io.imshow(img)
io.imsave('C:/Users/daiyo/Desktop/jupyter库/工坊/xiaomao.jpg',img)
io.show()

此代码与上面的

from skimage import io, data
img = data.chelsea()
io.imshow(img)
io.show()

效果一样

for循环批处理图像

import os
from skimage import iofolder_path = 'C:/Users/daiyo/Desktop/jupyter库/工坊/图像'
save_folder_path = 'C:/Users/daiyo/Desktop/jupyter库/工坊/图像/savepng'img_list = []# 遍历文件夹中的所有文件
for filename in os.listdir(folder_path):if filename.endswith('.jpg'):img_path = os.path.join(folder_path, filename)img = io.imread(img_path)img_list.append(img)# 保存图像为png格式
for i, img in enumerate(img_list):save_path = os.path.join(save_folder_path, f'image_{i}.png')  # 构造保存路径io.imsave(save_path, img)

在这里插入图片描述

  1. 首先导入必要的模块
  2. 设置源文件夹和目标文件夹的路径:
    folder_path:包含原始 .jpg 图像的文件夹路径。
    save_folder_path:将保存新的 .png 图像的目标文件夹路径。
  3. 初始化图像列表:
    创建一个空列表 img_list,用来存储从文件夹中读取的图像数据。
  4. 读取并存储图像数据:
    使用 os.listdir(folder_path) 遍历指定文件夹中的所有文件。
    对于每个文件,检查文件名是否以 .jpg 结尾。如果是,执行以下操作:
    使用 os.path.join(folder_path, filename) 构造完整的文件路径。
    使用 io.imread(img_path) 读取图像文件,并将读取的图像数据存储到变量 img 中。
    将 img 添加到列表 img_list 中。
  5. 保存图像为 PNG 格式:
    代码遍历img_list列表中的每个图像,使用enumerate()函数获取图像在列表中的索引i。
    然后构造保存路径save_path为save_folder_path下的’image_i.png’,其中i为图像在列表中的索引。最后使用io.imsave()函数将每个图像保存为png格式文件,保存在指定的文件夹路径下,文件名为’image_i.png’。

对图像属性的查看

图片类型

from skimage import io
a = 'tuxian.jpg'
img = io.imread('tuxian.jpg')
# io.imshow(img)
print("图片类型是",type(a))

在这里插入图片描述

图片尺寸

在这里插入图片描述

图片宽度

在这里插入图片描述

图像高度

在这里插入图片描述

通道数

在这里插入图片描述

总像素个数

在这里插入图片描述

最大像素值

在这里插入图片描述

最小像素值,像素平均值

在这里插入图片描述
在这里插入图片描述

图像点像素值

from skimage import io
img = io.imread('tuxian.jpg')
place = img[30, 40]
print(place)

在这里插入图片描述

for循环分别显示图像rgb通道

import cv2
img = cv2.imread("tuxian.jpg")
cv2.imshow("one1",img)
b = img[:,:,0]
g = img[:, :, 1]  
r = img[:, :, 2] 
cv2.imshow("b",b)
cv2.imshow("g", g)  
cv2.imshow("r", r) 
# 等待用户点击关闭窗口
while True:if cv2.waitKey(1) & 0xFF == ord('q'):breakcv2.destroyAllWindows()

这段代码的功能是显示原始图像以及其分离的蓝色、绿色和红色通道的图像,并等待用户按下"q"键来关闭显示的窗口。
在这里插入图片描述

椒盐噪声的生成

from skimage import io
import numpy as npimg = io.imread('tuxian.jpg')
rows, cols, dims = img.shapefor i in range(5000):x = np.random.randint(0, rows)y = np.random.randint(0, cols)img[x, y, :] = 255io.imshow(img)
io.imsave('after.jpg',img)
io.show()

这段代码的功能是在读取的图像上随机选取5000个像素位置,并将这些位置的像素值设置为白色,然后显示修改后的图像并保存为新的图像文件。
在这里插入图片描述

中值滤波处理

img2 = io.imread('after.jpg')
denoised_image = cv2.medianBlur(img2, 3)  # 3表示核的大小,可以根据需要调整
io.imshow(denoised_image)
io.show()

使用OpenCV库(cv2)中的medianBlur()函数对图像img2进行中值滤波处理,其中参数3表示核的大小。中值滤波是一种常用的去噪方法,可以有效地去除椒盐噪声。
在这里插入图片描述

高斯模糊处理

img2 = io.imread('after.jpg')
blurred_image = cv2.GaussianBlur(img2, (5, 5), 0)
io.imshow(blurred_image)
io.show()

使用OpenCV库(cv2)中的GaussianBlur()函数对图像img2进行高斯模糊处理。函数的第一个参数是输入图像,第二个参数是高斯核的大小,这里是(5, 5),第三个参数是高斯核的标准差,这里是0。高斯模糊是一种常用的去噪方法,可以平滑图像并降低噪声。
在这里插入图片描述

图像切割

from skimage import io
img = io.imread('羊.jpg')
roi = img[382:1075,810:1755,:]
# io.imshow(img)
io.imshow(roi)
io.show()

在这里插入图片描述

使用skimage库中的io模块读取了名为"羊.jpg"的图像,并将其存储在变量img中。然后,通过切片操作,选择了图像img中指定区域的感兴趣区域(ROI),即从382行到1075行、从810列到1755列的部分图像,并将其存储在变量roi中。
接着使用io.imshow()函数显示了选定的感兴趣区域roi,并调用io.show()函数展示了这个部分图像。

这篇关于图像处理1,灰度,data,for循环批处理图片,图片属性查看,图片单通道查看,椒盐噪声的生成,滤波处理,图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956759

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

Open3D 基于法线的双边滤波

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 输入参数: 输出参数: 参数影响: 2.2完整代码 三、实现效果 3.1原始点云 3.2滤波后点云 Open3D点云算法汇总及实战案例汇总的目录地址: Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客 一、概述         基于法线的双边

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D