poj 动态规划DP - 2533 Longest Ordered Subsequence

2024-05-03 10:38

本文主要是介绍poj 动态规划DP - 2533 Longest Ordered Subsequence,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

动态规划经典题:最长上升子序列。

 假如我们考虑求A[1],A[2],…,A[i]的最长非降子序列的长度,其中i<N, 那么上面的问题变成了原问题的一个子问题(问题规模变小了,你可以让i=1,2,3等来分析) 然后我们定义d(i),表示前i个数中以A[i]结尾的最长非降子序列的长度。OK, 对照“入门”中的简单题,你应该可以估计到这个d(i)就是我们要找的状态。 如果我们把d(1)到d(N)都计算出来,那么最终我们要找的答案就是这里面最大的那个。 状态找到了,下一步找出状态转移方程。

为了方便理解我们是如何找到状态转移方程的,我先把下面的例子提到前面来讲。 如果我们要求的这N个数的序列是:

5,3,4,8,6,7

根据上面找到的状态,我们可以得到:(下文的最长非降子序列都用LIS表示)

  • 前1个数的LIS长度d(1)=1(序列:5)
  • 前2个数的LIS长度d(2)=1(序列:3;3前面没有比3小的)
  • 前3个数的LIS长度d(3)=2(序列:3,4;4前面有个比它小的3,所以d(3)=d(2)+1)
  • 前4个数的LIS长度d(4)=3(序列:3,4,8;8前面比它小的有3个数,所以 d(4)=max{d(1),d(2),d(3)}+1=3)

OK,分析到这,我觉得状态转移方程已经很明显了,如果我们已经求出了d(1)到d(i-1), 那么d(i)可以用下面的状态转移方程得到:

d(i) = max{1, d(j)+1},其中j<i,A[j]<=A[i]

用大白话解释就是,想要求d(i),就把i前面的各个子序列中, 最后一个数不大于A[i]的序列长度加1,然后取出最大的长度即为d(i)。 当然了,有可能i前面的各个子序列中最后一个数都大于A[i],那么d(i)=1, 即它自身成为一个长度为1的子序列。


#include<stdio.h>
# define MAX 1002
int n;
int data[MAX];
int dp[MAX];void DP(){int i,j,len=0;for(i=1;i<=n;i++){dp[i]=1;for(j=1;j<=i;j++){if(data[j]<data[i] && dp[j]+1>dp[i])dp[i] = dp[j]+1;}if(len<dp[i]) len=dp[i];}printf("%d\n",len);
}
int main(){int i;scanf("%d",&n);for(i=1;i<=n;i++) {scanf("%d",&data[i]);}DP();
}



这篇关于poj 动态规划DP - 2533 Longest Ordered Subsequence的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956549

相关文章

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

.NET利用C#字节流动态操作Excel文件

《.NET利用C#字节流动态操作Excel文件》在.NET开发中,通过字节流动态操作Excel文件提供了一种高效且灵活的方式处理数据,本文将演示如何在.NET平台使用C#通过字节流创建,读取,编辑及保... 目录用C#创建并保存Excel工作簿为字节流用C#通过字节流直接读取Excel文件数据用C#通过字节

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

hdu1011(背包树形DP)

没有完全理解这题, m个人,攻打一个map,map的入口是1,在攻打某个结点之前要先攻打其他一个结点 dp[i][j]表示m个人攻打以第i个结点为根节点的子树得到的最优解 状态转移dp[i][ j ] = max(dp[i][j], dp[i][k]+dp[t][j-k]),其中t是i结点的子节点 代码如下: #include<iostream>#include<algorithm

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

hdu4865(概率DP)

题意:已知前一天和今天的天气概率,某天的天气概率和叶子的潮湿程度的概率,n天叶子的湿度,求n天最有可能的天气情况。 思路:概率DP,dp[i][j]表示第i天天气为j的概率,状态转移如下:dp[i][j] = max(dp[i][j, dp[i-1][k]*table2[k][j]*table1[j][col] )  代码如下: #include <stdio.h>#include

usaco 1.1 Broken Necklace(DP)

直接上代码 接触的第一道dp ps.大概的思路就是 先从左往右用一个数组在每个点记下蓝或黑的个数 再从右到左算一遍 最后取出最大的即可 核心语句在于: 如果 str[i] = 'r'  ,   rl[i]=rl[i-1]+1, bl[i]=0 如果 str[i] = 'b' ,  bl[i]=bl[i-1]+1, rl[i]=0 如果 str[i] = 'w',  bl[i]=b

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO