文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及高阶方程分段线性化的港口电-氢综合能源系统优化调度》

本文主要是介绍文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及高阶方程分段线性化的港口电-氢综合能源系统优化调度》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章的核心内容是关于港口电-氢综合能源系统优化调度的研究。文章提出了一种考虑高阶方程分段线性化的优化调度模型,旨在提高系统运行调度的安全性,并有效地提高新能源利用率。关键点包括:

  1. 问题背景:港口是国际物流中的主要运输方式,消耗大量电能和化石能源,存在环境问题。利用港口地区丰富的风力和太阳能资源,通过电制气(P2G)技术提高新能源消纳率。

  2. 系统建模:建立了包含风能、太阳能及氢气制取和储存单元在内的港口电-氢综合能源系统模型。模型包括发电部分、能源转换部分(电解槽)、储氢部分、氢负荷部分和电负荷部分。

  3. 电解槽模型:考虑了碱性水电解槽的产氢出力特性和运行约束,电解槽的产氢速率与耗电量成正比。

  4. 储氢罐模型:考虑了高压储气罐的温度-压强动态特性,建立了氢气在高压状态下的物理特性方程。

  5. 优化调度策略:提出了日前调度策略,目标是最小化系统运行成本,包括购电成本和购氢成本。

  6. 分段线性化处理:对高压储气罐的温度-压强高阶非线性模型进行分段线性化处理,提高了求解效率。

  7. 仿真验证:通过典型港口综合能源系统算例验证了所提方法的有效性。

  8. 结论:所提出的模型和方法能够在保证建模精确性的同时,提高系统对新能源发电的消纳能力,降低港口的碳排放。

为了复现文章中的仿真实验,我们需要遵循以下步骤,并以Python语言为例,给出相应的伪代码实现:

步骤 1: 系统模型建立

  • 根据文章描述,建立港口电-氢综合能源系统模型,包括风电机组、光伏发电系统、电解槽、储氢罐和负荷模型。

步骤 2: 参数设定

  • 设定系统部件参数,如风电机组、光伏发电系统、电解槽、储氢罐的性能参数,以及电价、氢价等经济参数。

步骤 3: 优化调度模型

  • 建立优化调度模型,目标是最小化系统运行成本,包括购电成本和购氢成本。

步骤 4: 分段线性化处理

  • 对储氢罐的温度-压强高阶非线性模型进行分段线性化处理,以提高求解效率。

步骤 5: 求解优化问题

  • 使用适当的优化算法求解建立的优化调度模型。

步骤 6: 结果分析

  • 分析优化结果,包括电能、氢能调度方案,储氢罐状态,以及成本分析。

Python伪代码实现

import numpy as np
from scipy.optimize import linprog# 示例参数,实际应用中应根据实际情况进行定义
# 这里仅为了展示结构,参数需要根据实际情况填充
wind_turbine_params = {...}
solar_panel_params = {...}
electrolyzer_params = {...}
storage_tank_params = {...}
load_params = {...}
economic_params = {...}# 步骤 1: 建立系统模型
def establish_system_model(params):# 根据参数建立系统模型# 包括风电、光伏、电解槽、储氢罐和负荷模型pass# 步骤 2: 建立优化调度模型
def optimization_model(system_model, economic_params):# 建立优化调度模型,包括目标函数和约束条件pass# 步骤 3: 分段线性化处理
def piecewise_linearization(nonlinear_model):# 对储氢罐的温度-压强高阶非线性模型进行分段线性化处理pass# 步骤 4: 求解优化问题
def solve_optimization(linearized_model):# 使用适当的优化算法求解线性化后的优化调度模型c = linearized_model['cost']A_eq = linearized_model['A_eq']b_eq = linearized_model['b_eq']bounds = linearized_model['bounds']result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs')return result# 步骤 5: 结果分析
def analyze_results(optimization_result, system_model):# 分析优化结果,包括电能、氢能调度方案,储氢罐状态,以及成本分析pass# 主程序
if __name__ == "__main__":# 建立系统模型system_model = establish_system_model({'wind_turbine': wind_turbine_params,'solar_panel': solar_panel_params,'electrolyzer': electrolyzer_params,'storage_tank': storage_tank_params,'load': load_params})# 建立优化调度模型optimization_model = optimization_model(system_model, economic_params)# 分段线性化处理linearized_model = piecewise_linearization(optimization_model)# 求解优化问题optimization_result = solve_optimization(linearized_model)# 结果分析results_analysis = analyze_results(optimization_result, system_model)# 输出结果print("Optimization Result:", optimization_result)print("Results Analysis:", results_analysis)

在实际应用中,你需要根据文章中提供的数学公式和方法来实现establish_system_modeloptimization_modelpiecewise_linearizationsolve_optimizationanalyze_results这些函数的具体逻辑。这些函数的具体实现可能会涉及到复杂的数学运算,可能需要使用到专业的数学和统计库,如NumPy、SciPy、pandas等。此外,对于优化问题,可能还需要使用到优化工具包,如SciPy.optimize。

请注意,由于文章中的方法可能包含高级的数学处理和优化算法,实际的代码实现可能比上述伪代码复杂得多,并且需要对电力系统规划和优化算法有深入的了解。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及高阶方程分段线性化的港口电-氢综合能源系统优化调度》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956358

相关文章

Django调用外部Python程序的完整项目实战

《Django调用外部Python程序的完整项目实战》Django是一个强大的PythonWeb框架,它的设计理念简洁优雅,:本文主要介绍Django调用外部Python程序的完整项目实战,文中通... 目录一、为什么 Django 需要调用外部 python 程序二、三种常见的调用方式方式 1:直接 im

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Java利用Spire.XLS for Java自动化设置Excel的文档属性

《Java利用Spire.XLSforJava自动化设置Excel的文档属性》一个专业的Excel文件,其文档属性往往能大大提升文件的可管理性和可检索性,下面我们就来看看Java如何使用Spire... 目录Spire.XLS for Java 库介绍与安装Java 设置内置的 Excel 文档属性Java

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

C#高效实现在Word文档中自动化创建图表的可视化方案

《C#高效实现在Word文档中自动化创建图表的可视化方案》本文将深入探讨如何利用C#,结合一款功能强大的第三方库,实现在Word文档中自动化创建图表,为你的数据呈现和报告生成提供一套实用且高效的解决方... 目录Word文档图表自动化:为什么选择C#?从零开始:C#实现Word文档图表的基本步骤深度优化:C

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

JAVA线程的周期及调度机制详解

《JAVA线程的周期及调度机制详解》Java线程的生命周期包括NEW、RUNNABLE、BLOCKED、WAITING、TIMED_WAITING和TERMINATED,线程调度依赖操作系统,采用抢占... 目录Java线程的生命周期线程状态转换示例代码JAVA线程调度机制优先级设置示例注意事项JAVA线程

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位