文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及高阶方程分段线性化的港口电-氢综合能源系统优化调度》

本文主要是介绍文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及高阶方程分段线性化的港口电-氢综合能源系统优化调度》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇文章的核心内容是关于港口电-氢综合能源系统优化调度的研究。文章提出了一种考虑高阶方程分段线性化的优化调度模型,旨在提高系统运行调度的安全性,并有效地提高新能源利用率。关键点包括:

  1. 问题背景:港口是国际物流中的主要运输方式,消耗大量电能和化石能源,存在环境问题。利用港口地区丰富的风力和太阳能资源,通过电制气(P2G)技术提高新能源消纳率。

  2. 系统建模:建立了包含风能、太阳能及氢气制取和储存单元在内的港口电-氢综合能源系统模型。模型包括发电部分、能源转换部分(电解槽)、储氢部分、氢负荷部分和电负荷部分。

  3. 电解槽模型:考虑了碱性水电解槽的产氢出力特性和运行约束,电解槽的产氢速率与耗电量成正比。

  4. 储氢罐模型:考虑了高压储气罐的温度-压强动态特性,建立了氢气在高压状态下的物理特性方程。

  5. 优化调度策略:提出了日前调度策略,目标是最小化系统运行成本,包括购电成本和购氢成本。

  6. 分段线性化处理:对高压储气罐的温度-压强高阶非线性模型进行分段线性化处理,提高了求解效率。

  7. 仿真验证:通过典型港口综合能源系统算例验证了所提方法的有效性。

  8. 结论:所提出的模型和方法能够在保证建模精确性的同时,提高系统对新能源发电的消纳能力,降低港口的碳排放。

为了复现文章中的仿真实验,我们需要遵循以下步骤,并以Python语言为例,给出相应的伪代码实现:

步骤 1: 系统模型建立

  • 根据文章描述,建立港口电-氢综合能源系统模型,包括风电机组、光伏发电系统、电解槽、储氢罐和负荷模型。

步骤 2: 参数设定

  • 设定系统部件参数,如风电机组、光伏发电系统、电解槽、储氢罐的性能参数,以及电价、氢价等经济参数。

步骤 3: 优化调度模型

  • 建立优化调度模型,目标是最小化系统运行成本,包括购电成本和购氢成本。

步骤 4: 分段线性化处理

  • 对储氢罐的温度-压强高阶非线性模型进行分段线性化处理,以提高求解效率。

步骤 5: 求解优化问题

  • 使用适当的优化算法求解建立的优化调度模型。

步骤 6: 结果分析

  • 分析优化结果,包括电能、氢能调度方案,储氢罐状态,以及成本分析。

Python伪代码实现

import numpy as np
from scipy.optimize import linprog# 示例参数,实际应用中应根据实际情况进行定义
# 这里仅为了展示结构,参数需要根据实际情况填充
wind_turbine_params = {...}
solar_panel_params = {...}
electrolyzer_params = {...}
storage_tank_params = {...}
load_params = {...}
economic_params = {...}# 步骤 1: 建立系统模型
def establish_system_model(params):# 根据参数建立系统模型# 包括风电、光伏、电解槽、储氢罐和负荷模型pass# 步骤 2: 建立优化调度模型
def optimization_model(system_model, economic_params):# 建立优化调度模型,包括目标函数和约束条件pass# 步骤 3: 分段线性化处理
def piecewise_linearization(nonlinear_model):# 对储氢罐的温度-压强高阶非线性模型进行分段线性化处理pass# 步骤 4: 求解优化问题
def solve_optimization(linearized_model):# 使用适当的优化算法求解线性化后的优化调度模型c = linearized_model['cost']A_eq = linearized_model['A_eq']b_eq = linearized_model['b_eq']bounds = linearized_model['bounds']result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=bounds, method='highs')return result# 步骤 5: 结果分析
def analyze_results(optimization_result, system_model):# 分析优化结果,包括电能、氢能调度方案,储氢罐状态,以及成本分析pass# 主程序
if __name__ == "__main__":# 建立系统模型system_model = establish_system_model({'wind_turbine': wind_turbine_params,'solar_panel': solar_panel_params,'electrolyzer': electrolyzer_params,'storage_tank': storage_tank_params,'load': load_params})# 建立优化调度模型optimization_model = optimization_model(system_model, economic_params)# 分段线性化处理linearized_model = piecewise_linearization(optimization_model)# 求解优化问题optimization_result = solve_optimization(linearized_model)# 结果分析results_analysis = analyze_results(optimization_result, system_model)# 输出结果print("Optimization Result:", optimization_result)print("Results Analysis:", results_analysis)

在实际应用中,你需要根据文章中提供的数学公式和方法来实现establish_system_modeloptimization_modelpiecewise_linearizationsolve_optimizationanalyze_results这些函数的具体逻辑。这些函数的具体实现可能会涉及到复杂的数学运算,可能需要使用到专业的数学和统计库,如NumPy、SciPy、pandas等。此外,对于优化问题,可能还需要使用到优化工具包,如SciPy.optimize。

请注意,由于文章中的方法可能包含高级的数学处理和优化算法,实际的代码实现可能比上述伪代码复杂得多,并且需要对电力系统规划和优化算法有深入的了解。

本专栏栏目提供文章与程序复现思路,具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》

论文与完整源程序_电网论文源程序的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/liang674027206/category_12531414.html

电网论文源程序-CSDN博客电网论文源程序擅长文章解读,论文与完整源程序,等方面的知识,电网论文源程序关注python,机器学习,计算机视觉,深度学习,神经网络,数据挖掘领域.https://blog.csdn.net/LIANG674027206?type=download

这篇关于文章解读与仿真程序复现思路——电力自动化设备EI\CSCD\北大核心《计及高阶方程分段线性化的港口电-氢综合能源系统优化调度》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956358

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

EMLOG程序单页友链和标签增加美化

单页友联效果图: 标签页面效果图: 源码介绍 EMLOG单页友情链接和TAG标签,友链单页文件代码main{width: 58%;是设置宽度 自己把设置成与您的网站宽度一样,如果自适应就填写100%,TAG文件不用修改 安装方法:把Links.php和tag.php上传到网站根目录即可,访问 域名/Links.php、域名/tag.php 所有模板适用,代码就不粘贴出来,已经打