单机多GPU的训练及debug中vscode下launch.json内容设置

2024-05-02 18:20

本文主要是介绍单机多GPU的训练及debug中vscode下launch.json内容设置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.预配置

Local_rank:当前机子上的第几块GPU。这里设置为-1,后续多线程自动分配显卡。

Cuda_visible_devices:指定分配资源到几块显卡上,这里‘0,1,2,3’就是这四张gpu的id。

os.environ['LOCAL_RANK'] = '-1'
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3'

2.初始化

其实是一个多线程的过程,开3张GPU就是开了三个进程,每一个进程各自独立。

这块代码就是一个线程:

1-2行:自动获得当前线程gpu的id,并配置到cuda中。

3-4行:初始化分布式训练,nccl是后端通信方式。

因为是单机,init_process_group()中其他不需要了,写多了容易端口冲突报错。

5: 获得当前线程的gpu的id。

6: 不同进程之间的同步,同步后运行后面的程序。

gpu = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(gpu)
dist_backend = 'nccl'
torch.distributed.init_process_group(backend=dist_backend)
device_id = torch.distributed.get_rank()
torch.distributed.barrier()

3.模型分配

三个线程每一个线程都有一个模型,将模型分配到当前线程的gpu_id。

broadcast_buffers=False:这里设置缓冲区不同步,

因为在后面每一个epoch结束后用了torch.distributed.barrier()来同步各个进程。

find_unused_parameters=True:减少无用梯度计算。

model = model.to(device_id)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device_id], broadcast_buffers=False, find_unused_parameters=True)

4.数据分配

1.创建数据samper

num_replicas=num_tasks:共有三张GPU,三个进程三份副本。

rank=device_id:当前分配的gpu_id。

2.创建dataloader

pin_memory=True:数据转移到GPU中速度就会快一些,吃显存。

num_workers=[3]:加速数据装载,吃内存。

num_tasks = torch.distributed.get_world_size()
sampler = torch.utils.data.DistributedSampler(dataset, num_replicas=num_tasks, rank=device_id, shuffle=shuffle)
loader = DataLoader(dataset,batch_size=bs,num_workers=[4],pin_memory=True,sampler=sampler,shuffle=shuffle,collate_fn=[None],drop_last=drop_last,)              

5.训练

每训练完一轮迭代同步一下。

for e in epochs:
....torch.distributed.barrier()

最后,在terminal运行。nproc_per_node=4就是有四张gpu。

python -m torch.distributed.launch --nproc_per_node=4 --use_env main.py

6.debug的vscode下的launch.json内容 

 比如我的训练指令为:

python -m torch.distributed.launch --nproc_per_node=3 --use_env dark.py --sim --experiment dark_img

注:其中训练用3张GPU,  dark.py 是运行程序,而--sim 和--experiment dark_img是要传入的2个参数,下面的dark.py在darkening文件夹下,darkening文件夹是.vscode的统计文件夹,则完整launch.json内容如下:

{"version": "0.2.0","configurations": [{"name": "Python 调试程序: debug","type": "python","request": "launch","program": "/opt/conda/lib/python3.8/site-packages/torch/distributed/launch.py", "args": ["--nproc_per_node=3","--use_env","${workspaceFolder}/darkening/dark.py","--sim","--experiment", "dark_img"],"console": "integratedTerminal","justMyCode": true,"cwd": "${workspaceFolder}",}

参考:

单机多GPU训练 - 知乎 (zhihu.com)

这篇关于单机多GPU的训练及debug中vscode下launch.json内容设置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/954886

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Linux从文件中提取特定内容的实用技巧分享

《Linux从文件中提取特定内容的实用技巧分享》在日常数据处理和配置文件管理中,我们经常需要从大型文件中提取特定内容,本文介绍的提取特定行技术正是这些高级操作的基础,以提取含有1的简单需求为例,我们可... 目录引言1、方法一:使用 grep 命令1.1 grep 命令基础1.2 命令详解1.3 高级用法2

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统