本文主要是介绍tensorflow 卷积神经网络 LeNet-5模型 MNIST手写体数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
____tz_zs小练习
案例来源《TensorFlow实战Google深度学习框架》
cnn/mnist_inference.py
# -*- coding: utf-8 -*-
"""
@author: tz_zs卷积神经网络 mnist_inference.py
"""import tensorflow as tf# 定义神经网络结构相关的参数
INPUT_NODE = 784
OUTPUT_NODE = 10IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10# 第一层卷积层的尺寸和深度
CONV1_DEEP = 32
CONV1_SIZE = 5# 第二层卷积层的尺寸和深度
CONV2_DEEP = 64
CONV2_SIZE = 5# 全连接层的节点个数
FC_SIZE = 512def inference(input_tensor, train, regularizer):with tf.variable_scope('layer1-conv1'):conv1_weights = tf.get_variable("weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))# print(conv1_weights) # <tf.Variable 'layer1-conv1/weight:0' shape=(5, 5, 1, 32) dtype=float32_ref># print(conv1_biases) # <tf.Variable 'layer1-conv1/bias:0' shape=(32,) dtype=float32_ref>conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))# print(conv1) # Tensor("layer1-conv1/Conv2D:0", shape=(100, 28, 28, 32), dtype=float32)# print(relu1) # Tensor("layer1-conv1/Relu:0", shape=(100, 28, 28, 32), dtype=float32)with tf.name_scope('layer2-pool1'):pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')# print(pool1) # Tensor("layer2-pool1/MaxPool:0", shape=(100, 14, 14, 32), dtype=float32)with tf.variable_scope('layer3-conv2'):conv2_weights = tf.get_variable("weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))with tf.name_scope('layer4-pool2'):pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')pool_shape = pool2.get_shape().as_list()# print(pool_shape)# [100, 7, 7, 64]-------[5000, 7, 7, 64]nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]reshaped = tf.reshape(pool2, [pool_shape[0], nodes])with tf.variable_scope('layer5-fc1'):fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))if regularizer != None:tf.add_to_collection('losses', regularizer(fc1_weights))fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)if train:fc1 = tf.nn.dropout(fc1, 0.5)with tf.variable_scope('layer6-fc2'):fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],initializer=tf.truncated_normal_initializer(stddev=0.1))if regularizer != None:tf.add_to_collection('losses', regularizer(fc2_weights))fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))logit = tf.matmul(fc1, fc2_weights) + fc2_biasesreturn logit
cnn/mnist_train.py
# -*- coding: utf-8 -*-
"""
@author: tz_zs卷积神经网络 mnist_train.py
"""
import tensorflow as tf
import os
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
# 加载函数
import cnn.mnist_inference as mnist_inference# 配置神经网络参数
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99# 模型保存路径和文件名
MODEL_SAVE_PATH = "/path/to/model/cnn/"
MODEL_NAME = "model.ckpt"def train(mnist):# 定义输入输出的placeholder# x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')x = tf.placeholder(tf.float32, [BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS],name='x-input')y_ = tf.placeholder(tf.float32, [BATCH_SIZE, mnist_inference.OUTPUT_NODE], name='y-input')# 定义正则化regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)# 使用前向传播y = mnist_inference.inference(x, True, regularizer)global_step = tf.Variable(0, trainable=False)# 滑动平均variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)variable_averages_op = variable_averages.apply(tf.trainable_variables())# print(tf.trainable_variables())# [<tf.Variable 'layer1-conv1/weight:0' shape=(5, 5, 1, 32) dtype=float32_ref>,# <tf.Variable 'layer1-conv1/bias:0' shape=(32,) dtype=float32_ref>,# <tf.Variable 'layer3-conv2/weight:0' shape=(5, 5, 32, 64) dtype=float32_ref>,# <tf.Variable 'layer3-conv2/bias:0' shape=(64,) dtype=float32_ref>,# <tf.Variable 'layer5-fc1/weight:0' shape=(3136, 512) dtype=float32_ref>,# <tf.Variable 'layer5-fc1/bias:0' shape=(512,) dtype=float32_ref>,# <tf.Variable 'layer6-fc2/weight:0' shape=(512, 10) dtype=float32_ref>,# <tf.Variable 'layer6-fc2/bias:0' shape=(10,) dtype=float32_ref>]# 损失函数cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y_, 1), logits=y)cross_entropy_mean = tf.reduce_mean(cross_entropy)loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))# print(tf.get_collection('losses'))# #[<tf.Tensor 'layer5-fc1/l2_regularizer:0' shape=() dtype=float32>,# <tf.Tensor 'layer6-fc2/l2_regularizer:0' shape=() dtype=float32>]# 学习率learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE,LEARNING_RATE_DECAY)# 优化算法train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)with tf.control_dependencies([train_step, variable_averages_op]):train_op = tf.no_op(name="train")# 持久化saver = tf.train.Saver()config = tf.ConfigProto()config.gpu_options.allow_growth = Truewith tf.Session(config=config) as sess:tf.global_variables_initializer().run()for i in range(TRAINING_STEPS):xs, ys = mnist.train.next_batch(BATCH_SIZE)# 调整为四维矩阵reshaped_xs = np.reshape(xs, [BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS])# 运行_, loss_valuue, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})# 每1000轮保存一次模型if i % 1000 == 0:print("After %d training step(s), loss on training batch is %g." % (step, loss_valuue))saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)def main(argv=None):mnist = input_data.read_data_sets("/tmp/data", one_hot=True)train(mnist)if __name__ == '__main__':tf.app.run()'''
运行结果:
After 1 training step(s), loss on training batch is 6.73231.
After 1001 training step(s), loss on training batch is 0.730202.
After 2001 training step(s), loss on training batch is 0.644094.
After 3001 training step(s), loss on training batch is 0.640496.
After 4001 training step(s), loss on training batch is 0.634515.
After 5001 training step(s), loss on training batch is 0.64231.
After 6001 training step(s), loss on training batch is 0.581734.
After 7001 training step(s), loss on training batch is 0.590254.
After 8001 training step(s), loss on training batch is 0.546791.
After 9001 training step(s), loss on training batch is 0.553352.
After 10001 training step(s), loss on training batch is 0.526924.
After 11001 training step(s), loss on training batch is 0.516263.
After 12001 training step(s), loss on training batch is 0.510524.
After 13001 training step(s), loss on training batch is 0.530617.
After 14001 training step(s), loss on training batch is 0.500552.
After 15001 training step(s), loss on training batch is 0.49316.
After 16001 training step(s), loss on training batch is 0.478148.
After 17001 training step(s), loss on training batch is 0.470733.
After 18001 training step(s), loss on training batch is 0.471833.
After 19001 training step(s), loss on training batch is 0.456701.
After 20001 training step(s), loss on training batch is 0.451218.
After 21001 training step(s), loss on training batch is 0.446669.
After 22001 training step(s), loss on training batch is 0.440087.
After 23001 training step(s), loss on training batch is 0.43465.
After 24001 training step(s), loss on training batch is 0.428076.
After 25001 training step(s), loss on training batch is 0.42475.
After 26001 training step(s), loss on training batch is 0.416584.
After 27001 training step(s), loss on training batch is 0.428798.
After 28001 training step(s), loss on training batch is 0.406561.
After 29001 training step(s), loss on training batch is 0.404045.
'''
cnn/mnist_eval.py
# -*- coding: utf-8 -*-
"""
@author: tz_zs卷积神经网络 测试程序 mnist_eval.py
"""
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_dataimport cnn.mnist_inference
import cnn.mnist_trainimport numpy as np# 每十秒加载一次最新的模型,并在测试数据上测试最新模型的准确率
EVAL_INTERVAL_SECS = 10def evaluate(mnist):with tf.Graph().as_default() as g:# x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name="x-input")x = tf.placeholder(tf.float32, [mnist.validation.num_examples,cnn.mnist_inference.IMAGE_SIZE,cnn.mnist_inference.IMAGE_SIZE,cnn.mnist_inference.NUM_CHANNELS],name='x-input')y_ = tf.placeholder(tf.float32, [mnist.validation.num_examples, cnn.mnist_inference.OUTPUT_NODE],name="y-input")# 数据输入调整为四维矩阵reshaped_xs = np.reshape(mnist.validation.images,[mnist.validation.num_examples,cnn.mnist_inference.IMAGE_SIZE,cnn.mnist_inference.IMAGE_SIZE,cnn.mnist_inference.NUM_CHANNELS])validate_feed = {x: reshaped_xs, y_: mnist.validation.labels}# 测试(测试时不用计算正则化损失)y = cnn.mnist_inference.inference(x, False, None)# 计算准确率correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))# 加载模型variable_averages = tf.train.ExponentialMovingAverage(cnn.mnist_train.MOVING_AVERAGE_DECAY)variables_to_restore = variable_averages.variables_to_restore()saver = tf.train.Saver(variables_to_restore)#print(variables_to_restore)# {'layer3-conv2/bias/ExponentialMovingAverage': <tf.Variable 'layer3-conv2/bias:0' shape=(64,) dtype=float32_ref>,# 'layer1-conv1/bias/ExponentialMovingAverage': <tf.Variable 'layer1-conv1/bias:0' shape=(32,) dtype=float32_ref>,# 'layer6-fc2/bias/ExponentialMovingAverage': <tf.Variable 'layer6-fc2/bias:0' shape=(10,) dtype=float32_ref>,# 'layer3-conv2/weight/ExponentialMovingAverage': <tf.Variable 'layer3-conv2/weight:0' shape=(5, 5, 32, 64) dtype=float32_ref>,# 'layer6-fc2/weight/ExponentialMovingAverage': <tf.Variable 'layer6-fc2/weight:0' shape=(512, 10) dtype=float32_ref>,# 'layer1-conv1/weight/ExponentialMovingAverage': <tf.Variable 'layer1-conv1/weight:0' shape=(5, 5, 1, 32) dtype=float32_ref>,# 'layer5-fc1/bias/ExponentialMovingAverage': <tf.Variable 'layer5-fc1/bias:0' shape=(512,) dtype=float32_ref>,# 'layer5-fc1/weight/ExponentialMovingAverage': <tf.Variable 'layer5-fc1/weight:0' shape=(3136, 512) dtype=float32_ref>}config = tf.ConfigProto()config.gpu_options.allow_growth = Truewhile True:with tf.Session(config=config) as sess:# 找到文件名ckpt = tf.train.get_checkpoint_state(cnn.mnist_train.MODEL_SAVE_PATH)# print(ckpt)# model_checkpoint_path: "/path/to/model/cnn/model.ckpt-4001"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-1"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-1001"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-2001"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-3001"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-4001"if ckpt and ckpt.model_checkpoint_path:# 加载模型saver.restore(sess, ckpt.model_checkpoint_path)# 通过文件名获得模型保存时迭代的轮数global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]# 运算出数据accuracy_score = sess.run(accuracy, feed_dict=validate_feed)print("After %s training stpe(s), validation accuracy = %g" % (global_step, accuracy_score))else:print("No checkpoint file found")returntime.sleep(EVAL_INTERVAL_SECS)def main(argv=None):mnist = input_data.read_data_sets("/tmp/data", one_hot=True)evaluate(mnist)if __name__ == '__main__':tf.app.run()'''
After 1 training stpe(s), validation accuracy = 0.047
After 1001 training stpe(s), validation accuracy = 0.9848
After 2001 training stpe(s), validation accuracy = 0.9894
After 3001 training stpe(s), validation accuracy = 0.9904
...
...
After 27001 training stpe(s), validation accuracy = 0.9932
After 28001 training stpe(s), validation accuracy = 0.9926
After 29001 training stpe(s), validation accuracy = 0.993
'''
这篇关于tensorflow 卷积神经网络 LeNet-5模型 MNIST手写体数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!