tensorflow 卷积神经网络 LeNet-5模型 MNIST手写体数字识别

本文主要是介绍tensorflow 卷积神经网络 LeNet-5模型 MNIST手写体数字识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

____tz_zs小练习


案例来源《TensorFlow实战Google深度学习框架》

cnn/mnist_inference.py

# -*- coding: utf-8 -*-
"""
@author: tz_zs卷积神经网络 mnist_inference.py
"""import tensorflow as tf# 定义神经网络结构相关的参数
INPUT_NODE = 784
OUTPUT_NODE = 10IMAGE_SIZE = 28
NUM_CHANNELS = 1
NUM_LABELS = 10# 第一层卷积层的尺寸和深度
CONV1_DEEP = 32
CONV1_SIZE = 5# 第二层卷积层的尺寸和深度
CONV2_DEEP = 64
CONV2_SIZE = 5# 全连接层的节点个数
FC_SIZE = 512def inference(input_tensor, train, regularizer):with tf.variable_scope('layer1-conv1'):conv1_weights = tf.get_variable("weight", [CONV1_SIZE, CONV1_SIZE, NUM_CHANNELS, CONV1_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))conv1_biases = tf.get_variable("bias", [CONV1_DEEP], initializer=tf.constant_initializer(0.0))# print(conv1_weights)  # <tf.Variable 'layer1-conv1/weight:0' shape=(5, 5, 1, 32) dtype=float32_ref># print(conv1_biases)  # <tf.Variable 'layer1-conv1/bias:0' shape=(32,) dtype=float32_ref>conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))# print(conv1)  # Tensor("layer1-conv1/Conv2D:0", shape=(100, 28, 28, 32), dtype=float32)# print(relu1)  # Tensor("layer1-conv1/Relu:0", shape=(100, 28, 28, 32), dtype=float32)with tf.name_scope('layer2-pool1'):pool1 = tf.nn.max_pool(relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')# print(pool1)  # Tensor("layer2-pool1/MaxPool:0", shape=(100, 14, 14, 32), dtype=float32)with tf.variable_scope('layer3-conv2'):conv2_weights = tf.get_variable("weight", [CONV2_SIZE, CONV2_SIZE, CONV1_DEEP, CONV2_DEEP],initializer=tf.truncated_normal_initializer(stddev=0.1))conv2_biases = tf.get_variable("bias", [CONV2_DEEP], initializer=tf.constant_initializer(0.0))conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))with tf.name_scope('layer4-pool2'):pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')pool_shape = pool2.get_shape().as_list()# print(pool_shape)# [100, 7, 7, 64]-------[5000, 7, 7, 64]nodes = pool_shape[1] * pool_shape[2] * pool_shape[3]reshaped = tf.reshape(pool2, [pool_shape[0], nodes])with tf.variable_scope('layer5-fc1'):fc1_weights = tf.get_variable("weight", [nodes, FC_SIZE],initializer=tf.truncated_normal_initializer(stddev=0.1))if regularizer != None:tf.add_to_collection('losses', regularizer(fc1_weights))fc1_biases = tf.get_variable("bias", [FC_SIZE], initializer=tf.constant_initializer(0.1))fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)if train:fc1 = tf.nn.dropout(fc1, 0.5)with tf.variable_scope('layer6-fc2'):fc2_weights = tf.get_variable("weight", [FC_SIZE, NUM_LABELS],initializer=tf.truncated_normal_initializer(stddev=0.1))if regularizer != None:tf.add_to_collection('losses', regularizer(fc2_weights))fc2_biases = tf.get_variable("bias", [NUM_LABELS], initializer=tf.constant_initializer(0.1))logit = tf.matmul(fc1, fc2_weights) + fc2_biasesreturn logit


cnn/mnist_train.py

# -*- coding: utf-8 -*-
"""
@author: tz_zs卷积神经网络 mnist_train.py
"""
import tensorflow as tf
import os
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
# 加载函数
import cnn.mnist_inference as mnist_inference# 配置神经网络参数
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99# 模型保存路径和文件名
MODEL_SAVE_PATH = "/path/to/model/cnn/"
MODEL_NAME = "model.ckpt"def train(mnist):# 定义输入输出的placeholder# x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')x = tf.placeholder(tf.float32, [BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS],name='x-input')y_ = tf.placeholder(tf.float32, [BATCH_SIZE, mnist_inference.OUTPUT_NODE], name='y-input')# 定义正则化regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)# 使用前向传播y = mnist_inference.inference(x, True, regularizer)global_step = tf.Variable(0, trainable=False)# 滑动平均variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)variable_averages_op = variable_averages.apply(tf.trainable_variables())# print(tf.trainable_variables())# [<tf.Variable 'layer1-conv1/weight:0' shape=(5, 5, 1, 32) dtype=float32_ref>,# <tf.Variable 'layer1-conv1/bias:0' shape=(32,) dtype=float32_ref>,# <tf.Variable 'layer3-conv2/weight:0' shape=(5, 5, 32, 64) dtype=float32_ref>,# <tf.Variable 'layer3-conv2/bias:0' shape=(64,) dtype=float32_ref>,# <tf.Variable 'layer5-fc1/weight:0' shape=(3136, 512) dtype=float32_ref>,# <tf.Variable 'layer5-fc1/bias:0' shape=(512,) dtype=float32_ref>,# <tf.Variable 'layer6-fc2/weight:0' shape=(512, 10) dtype=float32_ref>,# <tf.Variable 'layer6-fc2/bias:0' shape=(10,) dtype=float32_ref>]# 损失函数cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.argmax(y_, 1), logits=y)cross_entropy_mean = tf.reduce_mean(cross_entropy)loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))# print(tf.get_collection('losses'))# #[<tf.Tensor 'layer5-fc1/l2_regularizer:0' shape=() dtype=float32>,# <tf.Tensor 'layer6-fc2/l2_regularizer:0' shape=() dtype=float32>]# 学习率learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE,global_step,mnist.train.num_examples / BATCH_SIZE,LEARNING_RATE_DECAY)# 优化算法train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step)with tf.control_dependencies([train_step, variable_averages_op]):train_op = tf.no_op(name="train")# 持久化saver = tf.train.Saver()config = tf.ConfigProto()config.gpu_options.allow_growth = Truewith tf.Session(config=config) as sess:tf.global_variables_initializer().run()for i in range(TRAINING_STEPS):xs, ys = mnist.train.next_batch(BATCH_SIZE)# 调整为四维矩阵reshaped_xs = np.reshape(xs, [BATCH_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.IMAGE_SIZE,mnist_inference.NUM_CHANNELS])# 运行_, loss_valuue, step = sess.run([train_op, loss, global_step], feed_dict={x: reshaped_xs, y_: ys})# 每1000轮保存一次模型if i % 1000 == 0:print("After %d training step(s), loss on training batch is %g." % (step, loss_valuue))saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step=global_step)def main(argv=None):mnist = input_data.read_data_sets("/tmp/data", one_hot=True)train(mnist)if __name__ == '__main__':tf.app.run()'''
运行结果:
After 1 training step(s), loss on training batch is 6.73231.
After 1001 training step(s), loss on training batch is 0.730202.
After 2001 training step(s), loss on training batch is 0.644094.
After 3001 training step(s), loss on training batch is 0.640496.
After 4001 training step(s), loss on training batch is 0.634515.
After 5001 training step(s), loss on training batch is 0.64231.
After 6001 training step(s), loss on training batch is 0.581734.
After 7001 training step(s), loss on training batch is 0.590254.
After 8001 training step(s), loss on training batch is 0.546791.
After 9001 training step(s), loss on training batch is 0.553352.
After 10001 training step(s), loss on training batch is 0.526924.
After 11001 training step(s), loss on training batch is 0.516263.
After 12001 training step(s), loss on training batch is 0.510524.
After 13001 training step(s), loss on training batch is 0.530617.
After 14001 training step(s), loss on training batch is 0.500552.
After 15001 training step(s), loss on training batch is 0.49316.
After 16001 training step(s), loss on training batch is 0.478148.
After 17001 training step(s), loss on training batch is 0.470733.
After 18001 training step(s), loss on training batch is 0.471833.
After 19001 training step(s), loss on training batch is 0.456701.
After 20001 training step(s), loss on training batch is 0.451218.
After 21001 training step(s), loss on training batch is 0.446669.
After 22001 training step(s), loss on training batch is 0.440087.
After 23001 training step(s), loss on training batch is 0.43465.
After 24001 training step(s), loss on training batch is 0.428076.
After 25001 training step(s), loss on training batch is 0.42475.
After 26001 training step(s), loss on training batch is 0.416584.
After 27001 training step(s), loss on training batch is 0.428798.
After 28001 training step(s), loss on training batch is 0.406561.
After 29001 training step(s), loss on training batch is 0.404045.
'''

cnn/mnist_eval.py

# -*- coding: utf-8 -*-
"""
@author: tz_zs卷积神经网络 测试程序 mnist_eval.py
"""
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_dataimport cnn.mnist_inference
import cnn.mnist_trainimport numpy as np# 每十秒加载一次最新的模型,并在测试数据上测试最新模型的准确率
EVAL_INTERVAL_SECS = 10def evaluate(mnist):with tf.Graph().as_default() as g:# x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name="x-input")x = tf.placeholder(tf.float32, [mnist.validation.num_examples,cnn.mnist_inference.IMAGE_SIZE,cnn.mnist_inference.IMAGE_SIZE,cnn.mnist_inference.NUM_CHANNELS],name='x-input')y_ = tf.placeholder(tf.float32, [mnist.validation.num_examples, cnn.mnist_inference.OUTPUT_NODE],name="y-input")# 数据输入调整为四维矩阵reshaped_xs = np.reshape(mnist.validation.images,[mnist.validation.num_examples,cnn.mnist_inference.IMAGE_SIZE,cnn.mnist_inference.IMAGE_SIZE,cnn.mnist_inference.NUM_CHANNELS])validate_feed = {x: reshaped_xs, y_: mnist.validation.labels}# 测试(测试时不用计算正则化损失)y = cnn.mnist_inference.inference(x, False, None)# 计算准确率correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))# 加载模型variable_averages = tf.train.ExponentialMovingAverage(cnn.mnist_train.MOVING_AVERAGE_DECAY)variables_to_restore = variable_averages.variables_to_restore()saver = tf.train.Saver(variables_to_restore)#print(variables_to_restore)# {'layer3-conv2/bias/ExponentialMovingAverage': <tf.Variable 'layer3-conv2/bias:0' shape=(64,) dtype=float32_ref>,# 'layer1-conv1/bias/ExponentialMovingAverage': <tf.Variable 'layer1-conv1/bias:0' shape=(32,) dtype=float32_ref>,# 'layer6-fc2/bias/ExponentialMovingAverage': <tf.Variable 'layer6-fc2/bias:0' shape=(10,) dtype=float32_ref>,# 'layer3-conv2/weight/ExponentialMovingAverage': <tf.Variable 'layer3-conv2/weight:0' shape=(5, 5, 32, 64) dtype=float32_ref>,# 'layer6-fc2/weight/ExponentialMovingAverage': <tf.Variable 'layer6-fc2/weight:0' shape=(512, 10) dtype=float32_ref>,# 'layer1-conv1/weight/ExponentialMovingAverage': <tf.Variable 'layer1-conv1/weight:0' shape=(5, 5, 1, 32) dtype=float32_ref>,# 'layer5-fc1/bias/ExponentialMovingAverage': <tf.Variable 'layer5-fc1/bias:0' shape=(512,) dtype=float32_ref>,# 'layer5-fc1/weight/ExponentialMovingAverage': <tf.Variable 'layer5-fc1/weight:0' shape=(3136, 512) dtype=float32_ref>}config = tf.ConfigProto()config.gpu_options.allow_growth = Truewhile True:with tf.Session(config=config) as sess:# 找到文件名ckpt = tf.train.get_checkpoint_state(cnn.mnist_train.MODEL_SAVE_PATH)# print(ckpt)# model_checkpoint_path: "/path/to/model/cnn/model.ckpt-4001"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-1"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-1001"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-2001"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-3001"# all_model_checkpoint_paths: "/path/to/model/cnn/model.ckpt-4001"if ckpt and ckpt.model_checkpoint_path:# 加载模型saver.restore(sess, ckpt.model_checkpoint_path)# 通过文件名获得模型保存时迭代的轮数global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]# 运算出数据accuracy_score = sess.run(accuracy, feed_dict=validate_feed)print("After %s training stpe(s), validation accuracy = %g" % (global_step, accuracy_score))else:print("No checkpoint file found")returntime.sleep(EVAL_INTERVAL_SECS)def main(argv=None):mnist = input_data.read_data_sets("/tmp/data", one_hot=True)evaluate(mnist)if __name__ == '__main__':tf.app.run()'''
After 1 training stpe(s), validation accuracy = 0.047
After 1001 training stpe(s), validation accuracy = 0.9848
After 2001 training stpe(s), validation accuracy = 0.9894
After 3001 training stpe(s), validation accuracy = 0.9904
...
...
After 27001 training stpe(s), validation accuracy = 0.9932
After 28001 training stpe(s), validation accuracy = 0.9926
After 29001 training stpe(s), validation accuracy = 0.993
'''


这篇关于tensorflow 卷积神经网络 LeNet-5模型 MNIST手写体数字识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/954356

相关文章

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

java字符串数字补齐位数详解

《java字符串数字补齐位数详解》:本文主要介绍java字符串数字补齐位数,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java字符串数字补齐位数一、使用String.format()方法二、Apache Commons Lang库方法三、Java 11+的St

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图