【深度学习实战(30)】训练框架之使用tensorboard记录loss

2024-05-02 06:36

本文主要是介绍【深度学习实战(30)】训练框架之使用tensorboard记录loss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、 安装Tensorboard库

pip install tensorflow 
pip install tensorboardx

二、LossHistory类实现过程

1. init构造函数
传入参数log保存路径,模型,模型输入尺寸

def __init__(self, log_dir, model, input_shape):

实例化SummaryWriter对象

self.writer     = SummaryWriter(self.log_dir)
  1. tensorboard.SummaryWriter.add_graph记录model
 try:dummy_input     = torch.randn(2, 3, input_shape[0], input_shape[1])self.writer.add_graph(model, dummy_input)except:pass

训练结束后查看保存的模型
在这里插入图片描述
在这里插入图片描述

  1. 记录loss
self.losses.append(loss)
self.val_loss.append(val_loss)
  1. txt文档记录loss
with open(os.path.join(self.log_dir, "epoch_loss.txt"), 'a') as f:f.write(str(loss))f.write("\n")
with open(os.path.join(self.log_dir, "epoch_val_loss.txt"), 'a') as f:f.write(str(val_loss))f.write("\n")

训练完后,查看epoch_loss.txtepoch_val_loss.txt
在这里插入图片描述
在这里插入图片描述

  1. tensorboard.SummaryWriter.add_scalar记录loss
self.writer.add_scalar('loss', loss, epoch)
self.writer.add_scalar('val_loss', val_loss, epoch)

训练结束后查看保存的loss
在这里插入图片描述
在这里插入图片描述

  1. pyplot绘制loss曲线图
def loss_plot(self):iters = range(len(self.losses))plt.figure()plt.plot(iters, self.losses, 'red', linewidth = 2, label='train loss')plt.plot(iters, self.val_loss, 'coral', linewidth = 2, label='val loss')try:if len(self.losses) < 25:num = 5else:num = 15plt.plot(iters, scipy.signal.savgol_filter(self.losses, num, 3), 'green', linestyle = '--', linewidth = 2, label='smooth train loss')plt.plot(iters, scipy.signal.savgol_filter(self.val_loss, num, 3), '#8B4513', linestyle = '--', linewidth = 2, label='smooth val loss')except:passplt.grid(True)plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend(loc="upper right")plt.savefig(os.path.join(self.log_dir, "epoch_loss.png"))plt.cla()plt.close("all")

查看loss曲线图
在这里插入图片描述

三、LossHistory类完整代码

import os
import torch
from torch.utils.tensorboard import SummaryWriter
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import scipy.signalclass LossHistory():def __init__(self, log_dir, model, input_shape):self.log_dir    = log_dirself.losses     = []self.val_loss   = []os.makedirs(self.log_dir)self.writer     = SummaryWriter(self.log_dir)try:# --------- 1. tensorboard.SummaryWriter.add_graph记录model -------------#dummy_input     = torch.randn(2, 3, input_shape[0], input_shape[1],use_strict_trace=False)self.writer.add_graph(model, dummy_input)except:passdef append_loss(self, epoch, loss, val_loss):if not os.path.exists(self.log_dir):os.makedirs(self.log_dir)# --------- 2. 保存loss -------------#self.losses.append(loss)self.val_loss.append(val_loss)# --------- 3. txt记录loss -------------#with open(os.path.join(self.log_dir, "epoch_loss.txt"), 'a') as f:f.write(str(loss))f.write("\n")with open(os.path.join(self.log_dir, "epoch_val_loss.txt"), 'a') as f:f.write(str(val_loss))f.write("\n")# --------- 4. tensorboard.SummaryWriter.add_scalar记录loss -------------#self.writer.add_scalar('loss', loss, epoch)self.writer.add_scalar('val_loss', val_loss, epoch)self.loss_plot()# --------- 5. pyplot绘制loss曲线图 -------------#def loss_plot(self):iters = range(len(self.losses))plt.figure()plt.plot(iters, self.losses, 'red', linewidth = 2, label='train loss')plt.plot(iters, self.val_loss, 'coral', linewidth = 2, label='val loss')try:if len(self.losses) < 25:num = 5else:num = 15plt.plot(iters, scipy.signal.savgol_filter(self.losses, num, 3), 'green', linestyle = '--', linewidth = 2, label='smooth train loss')plt.plot(iters, scipy.signal.savgol_filter(self.val_loss, num, 3), '#8B4513', linestyle = '--', linewidth = 2, label='smooth val loss')except:passplt.grid(True)plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend(loc="upper right")plt.savefig(os.path.join(self.log_dir, "epoch_loss.png"))plt.cla()plt.close("all")

四、LossHistory类使用框架

import LossHistory# 构造loss_history类
loss_history = LossHistory(log_dir, model, (input_W, input_H))# 训练一轮,将训练,验证损失传进loss_history类
loss_history.append_loss(epoch + 1, train_loss / epoch_step, val_loss / epoch_step_val)# 根据loss_history类中保存的loss来保存最佳模型
if len(loss_history_.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history_.val_loss):best_ckpt = {'epoch': epoch, 'model': save_state_dict, 'optimizer': optimizer.state_dict(), 'loss':val_loss}torch.save(best_ckpt, os.path.join(save_dir, name_best_weights))# 训练一轮结束后,关闭Tensorboard.SummryWriter
loss_history.writer.close()

这篇关于【深度学习实战(30)】训练框架之使用tensorboard记录loss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/953596

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min