PotatoPie 4.0 实验教程(29) —— FPGA实现摄像头图像均值滤波处理

本文主要是介绍PotatoPie 4.0 实验教程(29) —— FPGA实现摄像头图像均值滤波处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像的均值滤波简介

图像均值滤波处理是一种常见的图像处理技术,用于降低图像中噪声的影响并平滑图像。该方法通过在图像中滑动一个固定大小的窗口(通常是一个正方形或矩形),将窗口中所有像素的值取平均来计算窗口中心像素的新值。这种操作会使图像中的高频噪声减弱,并且可以使图像的轮廓变得更加模糊,从而使得图像更加平滑。

图像均值滤波的理论依据是基于局部区域的像素值平均化。当图像中的一个像素值受到噪声的影响时,它的值可能会与其周围像素的值不一致。通过取局部区域像素值的平均,可以有效地减小噪声的影响,从而得到更加平滑的图像。

数学上,对于一个大小为 N×N 的滤波器(通常称为卷积核),图像中的每个像素被替换为其周围 N×N 区域中所有像素值的平均值。滤波器的大小决定了平滑效果的程度,较大的滤波器会导致更大程度的平滑,但可能会损失图像的细节信息。

均值滤波步骤和算法实现

均值滤波是一种常用的图像平滑处理方法,其步骤如下:

  1. 定义滤波模板: 通常使用一个固定大小的滤波模板(例如3×3或5×5)。

  2. 对每个像素应用滤波: 将模板中心的像素放置在图像的每个像素位置,并计算模板覆盖的像素的平均值。

  3. 更新图像值: 将计算得到的平均值作为当前像素的新值。

  4. 处理图像边界: 对于图像边界的像素,由于模板无法完全覆盖,需要根据特定的策略来处理,例如忽略边界像素、使用镜像边界像素或补零处理等。

  5. 输出结果: 输出经过均值滤波处理后的图像。

这种滤波方法有助于去除图像中的噪声和细节,使图像变得更加平滑。

python实现图像的均值滤波处理源码

import cv2
import numpy as np
import os
import matplotlib.pyplot as plt# 获取当前脚本所在目录
current_directory = os.path.dirname(os.path.abspath(__file__))# 构建图像文件的完整路径
image_path = os.path.join(current_directory, 'Lena.jpg')# 读取图像
image_in = cv2.imread(image_path)# 将彩色图像转换为灰度图像
image_gray = cv2.cvtColor(image_in, cv2.COLOR_BGR2GRAY)# 获取图像尺寸
row, col = image_gray.shape# 将灰度图像转换为浮点型
image_gray = image_gray.astype(float)# 初始化用于存储均值滤波结果的图像
average_image = np.zeros_like(image_gray)# 对灰度图像应用均值滤波
for i in range(1, row-1):for j in range(1, col-1):average_image[i, j] = (image_gray[i-1, j-1] + image_gray[i-1, j] + image_gray[i-1, j+1] +image_gray[i, j-1] + image_gray[i, j] + image_gray[i, j+1] +image_gray[i+1, j-1] + image_gray[i+1, j] + image_gray[i+1, j+1]) / 9# 添加椒盐噪声到灰度图像
noise_salt_pepper = np.random.choice([0, 1], size=(row, col), p=[0.99, 0.01])  # 进一步降低椒盐噪声密度
image_gray_salt_pepper = image_gray.copy()
image_gray_salt_pepper[noise_salt_pepper == 1] = 255  # 将椒盐噪声点的灰度值设为255# 初始化用于存储均值滤波结果的图像
average_image_salt_pepper = np.zeros_like(image_gray)# 对添加椒盐噪声后的灰度图像应用均值滤波
for i in range(1, row-1):for j in range(1, col-1):average_image_salt_pepper[i, j] = (image_gray_salt_pepper[i-1, j-1] + image_gray_salt_pepper[i-1, j] + image_gray_salt_pepper[i-1, j+1] +image_gray_salt_pepper[i, j-1] + image_gray_salt_pepper[i, j] + image_gray_salt_pepper[i, j+1] +image_gray_salt_pepper[i+1, j-1] + image_gray_salt_pepper[i+1, j] + image_gray_salt_pepper[i+1, j+1]) / 9# 添加高斯噪声到灰度图像
noise_gaussian = np.random.normal(0, 0.08, (row, col))  # 进一步降低高斯噪声的强度
image_gray_gaussian = image_gray + noise_gaussian * 255
image_gray_gaussian = np.clip(image_gray_gaussian, 0, 255)# 初始化用于存储均值滤波结果的图像
average_image_gaussian = np.zeros_like(image_gray)# 对添加高斯噪声后的灰度图像应用均值滤波
for i in range(1, row-1):for j in range(1, col-1):average_image_gaussian[i, j] = (image_gray_gaussian[i-1, j-1] + image_gray_gaussian[i-1, j] + image_gray_gaussian[i-1, j+1] +image_gray_gaussian[i, j-1] + image_gray_gaussian[i, j] + image_gray_gaussian[i, j+1] +image_gray_gaussian[i+1, j-1] + image_gray_gaussian[i+1, j] + image_gray_gaussian[i+1, j+1]) / 9# 显示原始灰度图像和均值滤波后的图像
plt.figure(figsize=(12, 10))plt.subplot(3, 2, 1)
plt.imshow(image_gray, cmap='gray')
plt.title('Original Gray Image')plt.subplot(3, 2, 2)
plt.imshow(average_image, cmap='gray')
plt.title('Average Image')plt.subplot(3, 2, 3)
plt.imshow(image_gray_salt_pepper, cmap='gray')
plt.title('Salt & Pepper Image')plt.subplot(3, 2, 4)
plt.imshow(average_image_salt_pepper, cmap='gray')
plt.title('Average Salt & Pepper Image')plt.subplot(3, 2, 5)
plt.imshow(image_gray_gaussian, cmap='gray')
plt.title('Gaussian Image')plt.subplot(3, 2, 6)
plt.imshow(average_image_gaussian, cmap='gray')
plt.title('Average Gaussian Image')plt.tight_layout()
plt.show()

这段代码实现了以下功能:

  1. 读取一张彩色图像并将其转换为灰度图像。
  2. 对灰度图像应用均值滤波,以平滑图像并降低噪声。
  3. 添加了椒盐噪声到灰度图像中,模拟图像中的随机噪声。
  4. 对添加了椒盐噪声的灰度图像应用均值滤波,以降低椒盐噪声对图像的影响。
  5. 添加了高斯噪声到灰度图像中,模拟图像中的连续噪声。
  6. 对添加了高斯噪声的灰度图像应用均值滤波,以降低高斯噪声对图像的影响。
  7. 显示原始灰度图像、均值滤波后的图像、添加椒盐噪声后的图像、添加高斯噪声后的图像以及它们各自的均值滤波结果。

这段代码可以用于图像处理中的噪声去除和平滑处理。

MATLAB实现图像的均值滤波处理源码

clear;  % 清空工作区变量
clear all;  % 清除所有变量
clc;  % 清空命令窗口% 获取当前脚本所在目录
current_directory = fileparts(mfilename('fullpath'));% 构建图像文件的完整路径
image_path = fullfile(current_directory, 'Lena.jpg');% 读取图像
image_in = imread(image_path);% 将彩色图像转换为灰度图像
image_gray = rgb2gray(image_in);% 获取图像尺寸
[row,col] = size(image_gray);% 将灰度图像转换为双精度类型
image_gray = im2double(image_gray); % 初始化用于存储均值滤波结果的图像
average_image = zeros(row,col);% 对灰度图像应用均值滤波
for i = 2:1:row-1for j = 2:1:col-1average_image(i,j) = (...image_gray(i-1,j-1) + image_gray(i-1,j) + image_gray(i-1,j+1) + ...image_gray(i,j-1)   + image_gray(i,j)   + image_gray(i,j+1)   + ...image_gray(i+1,j-1) + image_gray(i+1,j) + image_gray(i+1,j+1)) / 9;end
end% 添加椒盐噪声到灰度图像
image_gray_salt_pepper = imnoise(image_gray,'salt & pepper',0.05); 
image_gray_salt_pepper = im2double(image_gray_salt_pepper); % 初始化用于存储均值滤波结果的图像
average_image_salt_pepper = zeros(row,col);% 对添加椒盐噪声后的灰度图像应用均值滤波
for i = 2:1:row-1for j = 2:1:col-1average_image_salt_pepper(i,j) = (...image_gray_salt_pepper(i-1,j-1) + image_gray_salt_pepper(i-1,j) + image_gray_salt_pepper(i-1,j+1) + ...image_gray_salt_pepper(i,j-1)   + image_gray_salt_pepper(i,j)   + image_gray_salt_pepper(i,j+1)   + ...image_gray_salt_pepper(i+1,j-1) + image_gray_salt_pepper(i+1,j) + image_gray_salt_pepper(i+1,j+1)) / 9;end
end% 添加高斯噪声到灰度图像
image_gray_gaussian = imnoise(image_gray,'gaussian',0.05); 
image_gray_gaussian = im2double(image_gray_gaussian); % 初始化用于存储均值滤波结果的图像
average_image_gaussian = zeros(row,col);% 对添加高斯噪声后的灰度图像应用均值滤波
for i = 2:1:row-1for j = 2:1:col-1average_image_gaussian(i,j) = (...image_gray_gaussian(i-1,j-1) + image_gray_gaussian(i-1,j) + image_gray_gaussian(i-1,j+1) + ...image_gray_gaussian(i,j-1)   + image_gray_gaussian(i,j)   + image_gray_gaussian(i,j+1)   + ...image_gray_gaussian(i+1,j-1) + image_gray_gaussian(i+1,j) + image_gray_gaussian(i+1,j+1)) / 9;end
end% 显示原始灰度图像和均值滤波后的图像
figure
subplot(321);
imshow(image_gray), title('原始灰度图像');
subplot(322);
imshow(average_image), title('均值滤波后的图像');
subplot(323);
imshow(image_gray_salt_pepper), title('添加椒盐噪声后的灰度图像');
subplot(324);
imshow(average_image_salt_pepper), title('添加椒盐噪声后的均值滤波图像');
subplot(325);
imshow(image_gray_gaussian), title('添加高斯噪声后的灰度图像');
subplot(326);
imshow(average_image_gaussian), title('添加高斯噪声后的均值滤波图像');

这段代码实现了图像的均值滤波处理,具体功能如下:

  1. 清空工作区变量和命令窗口: clearclear allclc函数用于清空工作区变量和命令窗口,确保工作环境清晰。

  2. 获取当前脚本所在目录: filepartsmfilenamefullpath函数用于获取当前脚本所在的目录,并通过fullfile函数构建图像文件的完整路径,以便读取图像文件。

  3. 读取图像: imread函数读取名为”Lena.jpg”的图像文件,并将图像数据存储在变量image_in中。

  4. 转换为灰度图像: rgb2gray函数将彩色图像转换为灰度图像,以便后续处理。

  5. 获取图像尺寸: size函数获取灰度图像的尺寸,包括行数和列数。

  6. 转换为双精度类型: im2double函数将灰度图像转换为双精度类型,以便进行数学运算。

  7. 初始化存储均值滤波结果的图像矩阵: 创建一个与输入图像大小相同的矩阵average_image,用于存储均值滤波后的图像。

  8. 应用均值滤波: 使用两层嵌套的循环遍历图像中的每个像素,并对其应用3×3的均值滤波模板,得到均值滤波后的像素值。

  9. 添加噪声并进行均值滤波处理: 将灰度图像分别添加了椒盐噪声和高斯噪声,并对噪声图像分别进行均值滤波处理。

  10. 显示结果图像: 将原始灰度图像和三种处理后的图像(原始灰度图像、椒盐噪声+均值滤波、高斯噪声+均值滤波)以子图形式展示在一个大图中。

FPGA工程分析

工程层次图

demo18相比,只是多了一个img_mean_fltr的模块,也就是下面这一段代码,在从SDRAM读出来之后,经它处理后再输出hdmi_tx模块。

img_mean_fltr u_mean_fltr
(.i_clk(clk_pixel),.i_rst_n(sys_rst_n),.i_hs(VGA_HS),.i_vs(VGA_VS),.i_de(VGA_DE),.i_r(VGA_RGB[23:16]),.i_g(VGA_RGB[15:8] ),.i_b(VGA_RGB[7:0]  ),         .o_hs(mean_hs),.o_vs(mean_vs),.o_de(mean_de),   .o_r(mean_data[23:16]),.o_g(mean_data[15:8] ),.o_b(mean_data[7:0]  ) 
);

img_mean_fltr模块代码分析

从层次图可以看到这个模块的结果跟前面的 《PotatoPie 4.0 实验教程(28) —— FPGA实现sobel算子对摄像头图像进行边缘提取》整体结构是一样的。

首先例化图像缓冲模块,用于将图像从一个时钟一个像素转为一个时钟输出三行三列9个像素。以R通道为例

img_buf u_r_buf
(.i_clk      (i_clk        ),.i_rst_n    (i_rst_n      ),.i_de      (i_de        ),.i_data      (i_r        ),.o_de      (          ),.o_p11    (r_p11      ),.o_p12    (r_p12      ),.o_p13    (r_p13      ),  .o_p21    (r_p21      ),.o_p22    (r_p22      ),.o_p23    (r_p23      ),    .o_p31    (r_p31      ),.o_p32    (r_p32      ),.o_p33    (r_p33      )
);

代码后面又分别对G、B通道进行了行缓存的例化。

然后计算中心像素周围的另外8个像素的和,以R通道为例,

sum_r <= r_p11 + r_p12 + r_p13 + r_p21 + r_p23 + r_p31 + r_p32 + r_p33;

最后进行求平均值处理,右移3就相当于除以8。

avg_r <= sum_r >> 3;

管脚约束

与PotatoPie 4.0 实验教程(18) —— FPGA实现OV5640摄像头采集以SDRAM作为显存进行HDMI输出显示相同,不作赘述。

时序约束

与PotatoPie 4.0 实验教程(18) —— FPGA实现OV5640摄像头采集以SDRAM作为显存进行HDMI输出显示相同,不作赘述。

实验效果

这篇关于PotatoPie 4.0 实验教程(29) —— FPGA实现摄像头图像均值滤波处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/951721

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭