Kappa系数-评估分类算法的表现

2024-04-30 22:28

本文主要是介绍Kappa系数-评估分类算法的表现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#创作灵感#

        涉及到算法的评价指标,其中有个 Kappa 系数,这里记录一下,便于理解。

#正文#

        在机器学习领域,评价分类算法的准确性是至关重要的一环。而Kappa系数作为一种评价分类算法准确性的方法,能够帮助我们更全面地了解算法的表现。

Kappa系数的概念

        Kappa系数是一种衡量分类算法表现的方法,它比较了算法分类与随机选择之间的差异。从两个方面进行综合评估:
        1. 你做的分类有多准确?
        2. 你做的分类比随机选择好多少?

        通过比较实际的分类表现和随机选择的表现,Kappa系数可以给出一个相对客观的评价。

如何计算Kappa系数

        要计算Kappa系数,需要经过以下几个步骤:
        1. 构建混淆矩阵,记录算法在每个类别上的分类情况。
        2. 计算分类的准确率,即正确分类的比例。

准确率 = 正确分类数 / 总数

        3. 计算随机选择的准确率,代表了如果算法只是随机进行分类的表现会如何。

随机选择准确率 = 列比例 * 行比例 的总和

        其中,列比例:计算混淆矩阵中每一列的和,并除以总数,以得到每个类别被预测的概率。行比例:计算混淆矩阵中每一行的和,并除以总数,以得到每个类别的实际比例。
        4. 最后,通过一个公式计算Kappa系数,表示实际准确率和随机选择准确率之间的差异。

kappa = (准确率 - 随机选择准确率) / (1 - 随机选择准确率)

        Kappa系数的取值范围在 -1 到 1 之间,不同范围对应着不同的分类表现,具体如下:

  1. 小于 0:表示你的分类比随机选择还要差。
  2. 等于0:表示你的分类表现和随机选择一样。
  3. 0.01~0.20:表示你的分类稍微比随机选择好一些。
  4. 0.21~0.40:表示分类有一点进步。
  5. 0.41~0.60:表示有中等的进步。
  6. 0.61~0.80:表示表现良好。
  7. 0.81~1:表示非常好。

        Kappa系数能够帮助我们更全面地评价一个分类算法的优劣,不仅仅考虑了其准确率,还考虑了其相对于随机选择的改进程度。

这篇关于Kappa系数-评估分类算法的表现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950076

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int