paddleX LIME可解释性

2024-04-29 20:58
文章标签 解释性 paddlex lime

本文主要是介绍paddleX LIME可解释性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用LIME算法将模型预测结果的可解释性可视化。LIME表示与模型无关的局部可解释性,可以解释任何模型。LIME的思想是以输入样本为中心,在其附近的空间中进行随机采样,每个采样通过原模型得到新的输出,这样得到一系列的输入和对应的输出,LIME用一个简单的、可解释的模型(比如线性回归模型)来拟合这个映射关系,得到每个输入维度的权重,以此来解释模型。

 

https://paddlex.readthedocs.io/zh_CN/latest/apis/visualize.html

 

使用NormLIME算法将模型预测结果的可解释性可视化。 NormLIME是利用一定数量的样本来出一个全局的解释。NormLIME会提前计算一定数量的测试样本的LIME结果,然后对相同的特征进行权重的归一化,这样来得到一个全局的输入和输出的关系。

注意: 可解释性结果可视化目前只支持分类模型。

这篇关于paddleX LIME可解释性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947147

相关文章

深度学习可解释性学习资料汇总

一、著名的大佬课题组 1、张拳石教授的知乎 【导读】张老师的知乎个人简介: I am leading a group for explainable AI. The related topics include explainable CNNs, explainable generative networks, unsupervised semanticization of pre-tr

人工智能-机器学习:机器学习的可解释性(Explainable Machine Learning)

什么是机器学习的可解释性? 可解释性(explainability)有大量的近义词,比如可理解 (understandable), 可诠释 (interpretable), 透明(transparent), 可靠 (robust), 公平 (fair), 明确(explicit),忠实(faithful), 负责(responsible)。这些词与可解释性 (explainable) 之间到底存

Transformer模型、强化学习、深度学习模型可解释性与可视化方法、注意力机制、目标检测算法、图神经网络、强化学习

近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。 抽丝剥茧、深入浅出讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、Swin Transformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GAN、扩散模型Diffusion Model等)、目标

透明性和解释性AI:概念与应用

随着人工智能(AI)技术的迅猛发展,AI系统在日常生活、工业生产、医疗健康等领域的应用日益广泛。然而,随着AI系统的复杂性和影响力不断增加,透明性(Transparency)和解释性(Explainability)成为了AI研究和应用中的两个重要问题。本文将详细探讨透明性和解释性AI的概念、其在各领域的应用,以及面临的挑战和未来的发展方向。 1. 什么是透明性AI?

基于SHAP进行特征选择和贡献度计算——可解释性机器学习

方法介绍 SHAP(SHapley Additive exPlanations)是一个 Python 包,旨在解释任何机器学习模型的输出。SHAP 的名称源自合作博弈论中的 Shapley 值,它构建了一个加性的解释模型,将所有特征视为“贡献者”。对于每个预测样本,模型会产生一个预测值,而 SHAP 值则表示该样本中每个特征的贡献度。 假设第i个样本为Xi,第i个样本的第j个特征为Xij,模型

在uniapp+vue cli中使用lime-echart图表,关于使用异步数据_lime-echartuniapp

import {TitleComponent,TooltipComponent,GridComponent, DatasetComponent, TransformComponent, LegendComponent } from ‘echarts/components’; // 标签自动布局,全局过渡动画等特性 import {LabelLayout,UniversalTransition} f

为什么堆叠自编码器(Stacked Autoencoders, SAE)解释性很强!?

堆叠自编码器(Stacked Autoencoders, SAE)相对于卷积神经网络(CNN)在某些情况下具有更高的解释性,主要原因在于其结构和特性使其在特征提取和表示上具有一定的透明度和可解释性。以下是具体原因: 特征表示的透明性: 低维特征表示:自编码器通过压缩输入数据,将高维数据映射到低维特征空间。这些低维特征表示保留了输入数据的主要信息,并且这种映射是显式的,易于分析和理解。逐层特

德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第九周) - 可解释性

可解释性 1. NLP中的可解释性 1.1. 局部解释1.2. 文本解释1.3. 模型探测 2. 标注伪影3. 思维链 1. NLP中的可解释性 在自然语言处理领域,可解释性是指理解和揭示NLP模型如何做出决策的能力。一些模型本身是自然透明的,我们可以理解它们为何做出这样的决策(例如,一个小于10个结点的决策树)。随着NLP模型(尤其是基于深度学习的模型,如Transformer、BE

用于原发性进行性失语症分类的可解释性机器学习影像组学模型

摘要 背景:原发性进行性失语症(PPA)是一种以语言障碍为特征的神经退行性疾病。两种主要的临床亚型分别为语义型(svPPA)和非流利型失语(nfvPPA)。对PPA患者的诊断和分类是一个复杂的挑战,需要整合多模态信息,包括临床、生物学和放射学特征。结构神经影像学在辅助PPA鉴别诊断和构建诊断支持系统方面起着至关重要的作用。 方法:本研究对56例PPA患者(31例svPPA和25例nfvPPA)

机器学习-10-可解释性机器学习库Shapash

可解释性机器学习库Shapash——鸢尾花XGBoost分类解释实现 shapash的GitHub地址 机器学习的可解释性 1 机器学习的可解释性 1.1 可解释性简介 在机器学习的场景中,可解释性(interpretability)就表示模型能够使用人类可认知的说法进行解释和呈现。 机器学习模型被许多人称为“黑盒”。 这意味着虽然我们可以从中获得准确的预测,但我们无法清楚地解释或识别这些预