基于SHAP进行特征选择和贡献度计算——可解释性机器学习

2024-08-25 12:12

本文主要是介绍基于SHAP进行特征选择和贡献度计算——可解释性机器学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

方法介绍

SHAP(SHapley Additive exPlanations)是一个 Python 包,旨在解释任何机器学习模型的输出。SHAP 的名称源自合作博弈论中的 Shapley 值,它构建了一个加性的解释模型,将所有特征视为“贡献者”。对于每个预测样本,模型会产生一个预测值,而 SHAP 值则表示该样本中每个特征的贡献度。

假设第i个样本为Xi,第i个样本的第j个特征为Xij,模型对该样本的预测值为yi,整个模型的基线(通常是所有样本的目标变量的均值)为 ybase,那么 SHAP 值服从以下等式:

yi=ybase+f(Xi1)+f(Xi2)+⋯+f(Xik)

其中 f(Xij)表示第i个样本中第j个特征的 SHAP 值。从直观上看,f(Xi1)表示第i个样本中第1个特征对最终预测值yi的贡献。当f(Xj1)>0时,说明该特征提升了预测值,有正向作用;反之,则说明该特征降低了预测值,有反向作用。

解释器Explainer
 

在SHAP中进行模型解释需要先创建一个explainer,SHAP支持很多类型的explainer(例如deep、gradient、kernel、tree、sampling等),以tree为例,它支持常用的XGB、LGB、CatBoost等树集成算法。

explainer = shap.TreeExplainer(model) # #这里的model在准备工作中已经完成建模,模型名称就是modelshap_values = explainer.shap_values(X) # 传入特征矩阵X,计算SHAP值

上面的shap_values对象是一个包含两个array的list。第一个array是负向结果的SHAP值,而第二个array是正向结果的SHAP值。通常从预测正向结果的角度考虑模型的预测结果,所以会拿出正向结果的SHAP值(拿出shap_values[1])。

局部可解释性Local Interper,Local可解释性提供了预测的细节,侧重于解释单个预测是如何生成的。它可以帮助决策者信任模型,并且解释各个特征是如何影响模型单次的决策。

使用例子

import xgboost as xgb
from sklearn.model_selection import train_test_split
import shap
import pandas as pddata = pd.read_csv('example.csv')
X = data[['A', 'B', 'C', 'D', 'E']]
Y = data['F']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, shuffle=False)
xgb_model = xgb.XGBRegressor(random_state=42)
xgb_model.fit(X_train, Y_train)
explainer = shap.Explainer(xgb_model)
shap_values = explainer(X_test)shap.summary_plot(shap_values)  #提琴图shap.plots.bar(shap_values)  # Bar Plotshap.plots.bar(shap_values.cohorts(2).abs.mean(0))  # 队列图shap.plots.heatmap(shap_values[1:1000])  # 热图shap.plots.waterfall(shap_values[0])  # 瀑布图shap.initjs()
explainer = shap.TreeExplainer(xgb_model)
shap_values = explainer.shap_values(X_test)
def p(j):return(shap.force_plot(explainer.expected_value, shap_values[j,:], X_test.iloc[j,:]))
p(0)shap_values = explainer.shap_values(X_test)[1]
shap.decision_plot(explainer.expected_value, shap_values, X_test)

最后:

小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

这篇关于基于SHAP进行特征选择和贡献度计算——可解释性机器学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1105520

相关文章

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert