使用mmdetection来训练自己的数据集(visdrone)(二)数据集

2024-04-29 15:44

本文主要是介绍使用mmdetection来训练自己的数据集(visdrone)(二)数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据集下载

https://github.com/VisDrone/VisDrone-Dataset

数据集大小:

  • trainset (1.44 GB):
  • valset (0.07 GB):
  • testset-dev (0.28 GB):

VisDrone2019-DET-train.zip
(下载到D:/ultralytics/ultralytics/datasets/VisDrone目录下并解压)
VisDrone2019-DET-val.zip
(下载到D:/ultralytics/ultralytics/datasets/VisDrone目录下并解压)
VisDrone2019-DET-test-dev.zip
(下载到D:/ultralytics/ultralytics/datasets/VisDrone目录下并解压)
VisDrone2019-DET-test-challenge.zip
(下载到D:/ultralytics/ultralytics/datasets/VisDrone目录下并解压)

convert_visdrone2yolo.py (下载到
D:/ultralytics/ultralytics/datasets/VisDrone目录下)
convert_yolo2visdrone.py
注意:VisDrone目录自己创建

visdrone转变代码

import os
from pathlib import Path# 定义一个函数用于将VisDrone数据集的标注转换为YOLO格式的标注
def visdrone2yolo(dir):from PIL import Imagefrom tqdm import tqdm# 定义一个内部函数,用于将VisDrone的bbox坐标转换为YOLO格式的坐标def convert_box(size, box):# VisDrone框转换为YOLO xywh框dw = 1. / size[0]dh = 1. / size[1]return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh# 创建标签目录,如果不存在则创建(dir / 'labels').mkdir(parents=True, exist_ok=True)# 使用tqdm进度条迭代处理annotations文件夹中的所有txt文件pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')for f in pbar:# 获取对应图片的大小img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).sizelines = []with open(f, 'r') as file:  # 读取annotation.txt文件for row in [x.split(',') for x in file.read().strip().splitlines()]:if row[4] == '0':  # 忽略VisDrone中的‘ignored regions’类别0continuecls = int(row[5]) - 1box = convert_box(img_size, tuple(map(int, row[:4])))lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")with open(str(f).replace(f'{os.sep}annotations{os.sep}', f'{os.sep}labels{os.sep}'), 'w') as fl:fl.writelines(lines)  # 将转换后的标签写入label.txt文件# 指定数据集的根目录
dir = Path("D:/ultralytics/ultralytics/datasets/VisDrone")# 转换数据集标注
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':visdrone2yolo(dir / d)  # 转换VisDrone标注为YOLO标签

然后通过yolo转coco的代码

import os
import cv2
import json
from tqdm import tqdm
from sklearn.model_selection import train_test_split
import argparse# 解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument('--root_dir', default='./dataset/valid', type=str, help="根目录路径,包括./images和./labels及classes.txt")
parser.add_argument('--save_path', type=str, default='./valid.json', help="如果不划分数据集,则提供一个json文件路径")
parser.add_argument('--random_split', action='store_true', help="随机划分数据集,默认比例为8:1:1")
parser.add_argument('--split_by_file', action='store_true', help="根据文件划分数据集,包括./train.txt、./val.txt、./test.txt")arg = parser.parse_args()def train_test_val_split_random(img_paths, ratio_train=0.8, ratio_test=0.1, ratio_val=0.1):# 确保三个比例之和为1assert int(ratio_train + ratio_test + ratio_val) == 1train_img, middle_img = train_test_split(img_paths, test_size=1 - ratio_train, random_state=233)ratio = ratio_val / (1 - ratio_train)val_img, test_img = train_test_split(middle_img, test_size=ratio, random_state=233)print("训练集:验证集:测试集 = {}:{}:{}".format(len(train_img), len(val_img), len(test_img)))return train_img, val_img, test_imgdef train_test_val_split_by_files(img_paths, root_dir):# 根据train.txt, val.txt, test.txt文件定义训练集、验证集和测试集phases = ['train', 'val', 'test']img_split = []for p in phases:define_path = os.path.join(root_dir, f'{p}.txt')print(f'从 {define_path} 读取 {p} 数据集定义')assert os.path.exists(define_path)with open(define_path, 'r') as f:img_paths = f.readlines()# 取消注释下面一行可以使用绝对路径# img_paths = [os.path.split(img_path.strip())[1] for img_path in img_paths]img_split.append(img_paths)return img_split[0], img_split[1], img_split[2]def yolo2coco(arg):root_path = arg.root_dirprint("从路径加载数据", root_path)assert os.path.exists(root_path)originLabelsDir = os.path.join(root_path, 'labels')originImagesDir = os.path.join(root_path, 'images')with open(os.path.join(root_path, 'classes.txt')) as f:classes = f.read().strip().split()indexes = os.listdir(originImagesDir)if arg.random_split or arg.split_by_file:train_dataset = {'categories': [], 'annotations': [], 'images': []}val_dataset = {'categories': [], 'annotations': [], 'images': []}test_dataset = {'categories': [], 'annotations': [], 'images': []}for i, cls in enumerate(classes, 0):category_info = {'id': i, 'name': cls, 'supercategory': 'mark'}train_dataset['categories'].append(category_info)val_dataset['categories'].append(category_info)test_dataset['categories'].append(category_info)if arg.random_split:print("划分模式: 随机划分")train_img, val_img, test_img = train_test_val_split_random(indexes, 0.8, 0.1, 0.1)elif arg.split_by_file:print("划分模式: 根据文件划分")train_img, val_img, test_img = train_test_val_split_by_files(indexes, root_path)else:dataset = {'categories': [], 'annotations': [], 'images': []}for i, cls in enumerate(classes, 0):dataset['categories'].append({'id': i, 'name': cls, 'supercategory': 'mark'})ann_id_cnt = 0for k, index in enumerate(tqdm(indexes)):txtFile = index.replace('images', 'txt').replace('.jpg', '.txt').replace('.png', '.txt')im = cv2.imread(os.path.join(root_path, 'images/') + index)height, width, _ = im.shapeif arg.random_split or arg.split_by_file:if index in train_img:dataset = train_datasetelif index in val_img:dataset = val_datasetelif index in test_img:dataset = test_datasetdataset['images'].append({'file_name': index, 'id': k, 'width': width, 'height': height})if not os.path.exists(os.path.join(originLabelsDir, txtFile)):continuewith open(os.path.join(originLabelsDir, txtFile), 'r') as fr:labelList = fr.readlines()for label in labelList:label = label.strip().split()x = float(label[1])y = float(label[2])w = float(label[3])h = float(label[4])H, W, _ = im.shapex1 = (x - w / 2) * Wy1 = (y - h / 2) * Hx2 = (x + w / 2) * Wy2 = (y + h / 2) * Hcls_id = int(label[0])width = max(0, x2 - x1)height = max(0, y2 - y1)dataset['annotations'].append({'area': width * height,'bbox': [x1, y1, width, height],'category_id': cls_id,'id': ann_id_cnt,'image_id': k,'iscrowd': 0,'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]]})ann_id_cnt += 1folder = os.path.join(root_path, 'annotations')if not os.path.exists(folder):os.makedirs(folder)if arg.random_split or arg.split_by_file:for phase in ['train', 'val', 'test']:json_name = os.path.join(root_path, 'annotations/{}.json'.format(phase))with open(json_name, 'w') as f:if phase == 'train':json.dump(train_dataset, f)elif phase == 'val':json.dump(val_dataset, f)elif phase == 'test':json.dump(test_dataset, f)print('已保存注释到 {}'.format(json_name))else:json_name = os.path.join(root_path, 'annotations/{}'.format(arg.save_path))with open(json_name, 'w') as f:json.dump(dataset, f)print('已保存注释到 {}'.format(json_name))if __name__ == "__main__":yolo2coco(arg)

运行代码

python yolo2coco.py --root_dir VisDrone2019-DET-train --save_path train.json
python yolo2coco.py --root_dir VisDrone2019-DET-val --save_path val.json
python yolo2coco.py --root_dir VisDrone2019-DET-test-dev --save_path test.json

这篇关于使用mmdetection来训练自己的数据集(visdrone)(二)数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946502

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者