论文笔记3《基于信息增益和最小距离分类的决策树改进算法》

本文主要是介绍论文笔记3《基于信息增益和最小距离分类的决策树改进算法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2013年《科学技术与工程》期刊

部分摘要:改进后的算法针对决策树在分类过程中遇到的训练集中存在相同属性集,但属于不同类别的实例的情况,不再采用多数表决法判断叶结点的类别,而是采用基于信息增益的属性约简和最小距离分类的新方法进行类别的判断。


算法改进:



算法描述:

(i)    先构造ID3决策树,但在构造的过程中对于具有相同属性集属于不同类别的实例,暂时用null标注它的类别;

(ii)   对决策树中所有类别为的叶结点,调用基于信息增益的最小距离分类器对它们进行重新分类。


实验结果:

    数据:



从图中可以看出树叶1-6都是纯叶结点,树叶7不是纯叶结点。训练集中实例8,9属于树叶7,而实例8和实例9具有相同属性集,但属于不同类别, 下面将采用基于信息增益的最小距离分类来决定树叶的类别。

(1) 计算属性的信息增益并将信息增益归一化处理后结果为:

InfoGain(weather)=0.56

InfoGain(temperature)=0.11

InfoGain(humidity)=0.31

InfoGain(windy)=0.02

(2) 就算叶子7和其他叶节点的距离:

树叶7的中心结点K的各属性值为:(weather=rain,temperature=cool,humidity=normal,windy=yes,tennis=null);

树叶6的中心结点K的各属性值为:(weather=rain,temperature=hot,humidity=high,windy=no,tennis=no);

树叶5的中心结点K的各属性值为:(weather=rain,temperature=warm,humidity=high,windy=no,tennis=yes);

树叶4的中心结点K的各属性值为:(weather=rain,temperature=warm,humidity=high,windy=yes,tennis=no);

…其他同理

则距离D(K,)==0.663;D(K,)=0.663;D(K,)=0.648;

通过比较可知与最近的应该是,因此树叶7的类别应该与树叶4一样为no。



这篇关于论文笔记3《基于信息增益和最小距离分类的决策树改进算法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946447

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

C#读取本地网络配置信息全攻略分享

《C#读取本地网络配置信息全攻略分享》在当今数字化时代,网络已深度融入我们生活与工作的方方面面,对于软件开发而言,掌握本地计算机的网络配置信息显得尤为关键,而在C#编程的世界里,我们又该如何巧妙地读取... 目录一、引言二、C# 读取本地网络配置信息的基础准备2.1 引入关键命名空间2.2 理解核心类与方法

使用Python检查CPU型号并弹出警告信息

《使用Python检查CPU型号并弹出警告信息》本教程将指导你如何编写一个Python程序,该程序能够在启动时检查计算机的CPU型号,如果检测到CPU型号包含“I3”,则会弹出一个警告窗口,感兴趣的小... 目录教程目标方法一所需库步骤一:安装所需库步骤二:编写python程序步骤三:运行程序注意事项方法二

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第