代码+视频,R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线

本文主要是介绍代码+视频,R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ROC曲线分析是用于评估一个因素预测能力的手段,是可以用于连续型变量分组的方法。在生存分析中,疾病状态和因素取值均会随时间发生变化。而标准的ROC曲线分析将个体的疾病状态和因素取值视作固定值,未将时间因素考虑在分析之中。在这种情况下,使用时间依赖性ROC无疑是更好的选择

在这里插入图片描述
今天咱们视频来演示一下时间依赖ROC曲线绘制

R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线

代码

library(survival)
library("survminer")
library(foreign)
#公众号:零基础说科研
#公众号回复:乳腺癌,可以获得这个数据
bc <- read.spss("E:/r/test/Breast cancer survival agec.sav",use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)
names(bc)
##分类变量转成因子
bc$histgrad<-as.factor(bc$histgrad)
bc$er<-as.factor(bc$er)
bc$pr<-as.factor(bc$pr)
bc$ln_yesno<-as.factor(bc$ln_yesno)f1<-coxph(Surv(time,status)~er+histgrad+pr+age+ln_yesno,bc,x=TRUE,y=TRUE)
f2<-coxph(Surv(time,status)~er+histgrad+ln_yesno,bc,x=TRUE,y=TRUE)
f3<-coxph(Surv(time,status)~ln_yesno,bc,x=TRUE,y=TRUE)library(riskRegression)
A3<- riskRegression::Score(list("f1"=f1),formula=Surv(time,status)~1,data=bc,metrics="auc",null.model=F,times=seq(3,132,1))
plotAUC(A3)
##########
auc<-plotAUC(A3)
ggplot()+geom_line(data=auc, aes(times,AUC),linetype=1,size=1,alpha = 0.6,colour="red")+geom_ribbon(data=auc, aes(times,ymin = lower, ymax = upper),alpha = 0.1,fill="red")+geom_hline(yintercept=1, linetype=2,size=1)+theme_classic()+ labs(title = "时间相关性ROC", x="times", y="AUC")A3<- riskRegression::Score(list("f1"=f1,"f2"=f2),formula=Surv(time,status)~1,data=bc,metrics="AUC",null.model=F,times=seq(3,132,1))
plotAUC(A3)
auc<-plotAUC(A3)
ggplot()+geom_line(data=auc, aes(times,AUC,group=model,col=model))+geom_ribbon(data=auc, aes(times,ymin = lower, ymax = upper,fill=model),alpha = 0.1)+geom_hline(yintercept=1, linetype=2,size=1)+theme_classic()+ labs(title = "时间相关性ROC", x="times", y="AUC")
###########
library(pec)
A1<-pec::cindex(list("f1"=f1),formula=Surv(time,status)~er+histgrad+pr+age+ln_yesno,data=bc,eval.times=seq(3,132,1))
plot(A1)A1<-pec::cindex(list("f1"=f1,"f2"=f2,"f3"=f3),formula=Surv(time,status)~er+histgrad+pr+age+ln_yesno,data=bc,eval.times=seq(3,132,1))
plot(A1)

这篇关于代码+视频,R语言绘制生存分析模型的时间依赖(相关)性roc曲线和时间依赖(相关)性cindex曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946312

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Maven如何手动安装依赖到本地仓库

《Maven如何手动安装依赖到本地仓库》:本文主要介绍Maven如何手动安装依赖到本地仓库问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、下载依赖二、安装 JAR 文件到本地仓库三、验证安装四、在项目中使用该依赖1、注意事项2、额外提示总结一、下载依赖登