《机器学习by周志华》学习笔记-线性模型-03

2024-04-29 13:04

本文主要是介绍《机器学习by周志华》学习笔记-线性模型-03,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、多分类学习

1.1、背景

我们在上一节介绍了「线性判别分析(LDA)」,LDA的从二分类任务可以推广到多分类任务中。

而现实中常遇到的多分类学习任务。有些二分类的学习方法可以直接推广到多分类,但是更多情况下是基于一些策略,利用二分类学习器来解决多分类的问题。

1.2、概念

我们通常将「分类学习器」简称「分类器(classifier)」,多个「分类器」的集成使用,则称为「集成学习」。

一般的,分类器使用「多分类学习」的方法来完成分类任务。本章主要介绍了「多分类学习」的方法。

1.3、基本思路

「多分类学习」的基本思路是「拆解法」,即将「多分类任务」拆成「若干个二分类任务」求解。

具体来说就是:

  • 先对问题进行拆分;
  • 然后为「拆出的每个二分类任务」训练出一个「分类器」;
  • 最后对这些分类器进行「集成使用」;

在测试时,对这些分类器的预测结果进行集成,获得最终的多分类结果。这里的关键如下:

  • 如何对多分类任务进行拆分
  • 如何对多个分类器进行集成

1.4、拆分策略

给定m个示例的数据集D有n个类别,y是其所有示例的真实标记,所有类别集合用C表示,则:

D=\left \{ (x_{1} ,y_{1} ),(x_{2} ,y_{2} ),...,(x_{m} ,y_{m} )\right \}

C=\left \{ C_{1},C_{2},...,C_{n} \right \}

yi\in C

常见的拆分策略有三种:

  • 一对一(One vs.One,简称OvO)
  • 一对其余(One vs.Rest,简称OvR):亦称OvA(One vs.All),但OvA这个说法不严格,因为不可能把“所有类”作为反类。
  • 多对多(Many vs.Many,简称MvM)

后面我们将详细介绍这三种拆分策略。

1.4.1、一对一(OvO)

首先,将n个类别「两两配对」,从而产生\hat{n}个二分类任务,即\hat{n}个二分类器。

\hat{n}=C_{n}^{2}=\frac{A_{n}^{2}}{A_{2}^{2}}=\frac{n\times (n-1)}{2\times 1}= \frac{n(n-1)}{2}

其次,每个二分类任务,都C_{i}表示正例,C_{j}表示反例。

再次,将D的所有m个样本同时提交给\hat{n}个二分类器。

最后,结果通过投票产生,即把被预测的最多的类别作为最终分类结果。

如下图所示:

1.4.2、一对其余(OvR)

首先,每次将一个类的样例作为正例、其余的类作为反例来训练,从而产生n次训练任务、n个二分类器以及预测结果。

其次,将D的所有m个样本同时提交给n个二分类器。

最后,分情况选择分类结果:

  • 当只有一个分类器预测为正例,则对应类别就是分类结果,例如下图的C3
  • 当有多个分类器预测为正例,则考虑每个分类器预测的置信度,选择最大的类别作为分类结果。

OvO与OvR对比:

对比类别OvOOvR分析
训练分类器个数nn(n-1)/2OvO的存储开销、测试(训练)时间较大。
每个分类器训练样例数2个类别的样例n个类别的样例在类别很多的时候,OvO的测试(训练)时间、开销更小。
预测性能//依赖于二者的数据分布,多数情况都差不多。

1.4.3、多对多(MvM)

就是将若干个类的样例作为「正例」,其他类的样例作为「反例」。其构造必须有特殊的设计,不能随意选取。

OvO和OvR是MvM的一种拆分方式,属于MvM的特例。

我们会在下面介绍一种常用的选取技术「纠错输出码(Error Correcting Output Codes,简称ECOC)」,它是将编码的思维引入类别拆分,并尽可能在编码过程中具有容错性,其工作主要分为以下2步:

第一步:编码

  • 对n个类别做m次划分,每次划分将一部分类别划分为「正类」,另一部分为「反类」,从而形成一个二分类训练集。
  • 一共产生m个训练

这篇关于《机器学习by周志华》学习笔记-线性模型-03的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/946158

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了