本文主要是介绍生信学习笔记:测序数据质控,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 测序数据质控
- 1.原始数据统计
- 2.质控数据统计
测序数据质控
Illumina 测序属于第二代测序技术,单次运行能产生数十亿级的reads,如此海量的数据无法逐个展示每条read的质量情况;运用统计学的方法,对所测序列进行统计和质控,可以从宏观上直观地反映出样本的文库构建质量和测序质量。
1.原始数据统计
1)原始数据获得
Illumina 平台通过将测序图像信号经CASAVA碱基识别(Base Calling)转换成文字信号,并将其以 fastq 格式储存起来作为原始数据。根据index序列区分各个样本的数据,以便进行后续分析。在fastq文件中每条序列由4行数据组成,其中第一行和第三行为读段识别码(第一行以“@”开头,第三行以“+”开头),第二行为碱基序列,而第四行是第二行序列的各碱基所对应的测序质量值。
如下所示:
2)原始数据质控
对每一个样本的原始测序数据进行测序相关质量评估,包括:① 碱基质量分布统计; ② 碱基错误率分布统计;③ A/T/G/C碱基含量分布统计。
使用软件:fastx_toolkit_0.0.14。
① 碱基质量分布统计
测序的错误率与碱基的质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。通过公式计算,可以得出一个综合的值,即质量值(Q),用来评估测序的质量。随着测序的进行,酶的活性及其它物质的灵敏度也会下降,因此到达一定测序长度后,Q值也会随之下降。
② 碱基错误率分布统计
测序错误率会随着测序序列(Sequenced Reads)长度的增加而升高,这是由测序过程中化学试剂的消耗导致的,为Illumina高通量测序平台的共有特征;另外,前6个碱基的位置也会发生较高的测序错误率,而这个长度也正好等于在RNA-seq建库过程中反转录所需要的随机引物的长度。这部分碱基的测序错误率较高可能是由于随机引物与RNA模版的不完全结合导致。
③ A/T/G/C碱基含量分布统计
碱基含量分布一般用于检测有无AT、GC分离现象。对于RNA-seq来说,鉴于序列打断的随机性和G/C、A/T含量分别相等的原则,理论上每个测序循环中的GC含量相等、AT含量相等(如果是链特异性建库,可能会出现AT分离和/或GC分离),且在整个测序过程基本稳定不变,呈水平线。但在现有的高通量测序技术中,反转录合成 cDNA 时所用的6bp的随机引物会引起前几个位置的核苷酸组成存在一定的偏好性,这种波动属于正常情况。
2.质控数据统计
由于原始测序数据中会包含测序接头序列、低质量读段、N(N表示不确定碱基信息)率较高序列及长度过短序列,这将严重影响后续分析的质量。所以,在分析之前会先对原始测序数据进行质控,从而得到高质量的质控数据(clean data)以保证后续分析结果的准确性。
使用软件: SeqPrep 和 Sickle
具体步骤及顺序如下:
-
去除reads中的接头序列,去除由于接头自连等原因导致没有插入片段的reads;
-
将序列末端(3’端)低质量(质量值小于20)的碱基修剪掉,如剩余序列中仍然有质量值小于10的碱基,则将整条序列剔除,否则保留;
-
去除含N(模块碱基)的reads;
-
舍弃去adapter及质量修剪后长度小于30bp的序列。
数据质控完成后,对质控后的数据再次进行统计以及质量评估,同样包括:
① 碱基质量分布统计;
② 碱基错误率分布统计;
③ A/T/G/C碱基含量分布统计。
接头序列为:
5’: AGATCGGAAGAGCACACGTC
3’: AGATCGGAAGAGCGTCGTGT
参考资料:
美吉生物云
这篇关于生信学习笔记:测序数据质控的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!