【数据结构】最小生成树(Prim算法、Kruskal算法)解析+完整代码

2024-04-28 22:44

本文主要是介绍【数据结构】最小生成树(Prim算法、Kruskal算法)解析+完整代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

5.1 最小生成树

  • 定义

    对一个带权连通无向图 G = ( V , E ) G=(V,E) G=(V,E),生成树不同,每棵树的权(即树中所有边上的权值之和)也可能不同。

    设R为G的所有生成树的集合,若T为R中边的权值之和最小的生成树,则T称为G的最小生成树(MST)。

  • 性质

    1.最小生成树可能有多个,但边的权值之和总是唯一且最小的;

    2.最小生成树的边数=顶点数-1。砍掉一条则不连通,增加一条会出现回路;

    3.如果一个连通图本身就是一棵树,则其最小生成树就是它本身;

    4.只有连通图才有最小生成树,非连通图只有生成森林。

5.1.1 Prim算法
  • 定义

    从某一个顶点开始构建生成树;

    每次将代价最小的新顶点纳入生成树,直到所有顶点都纳入为止。

    在这里插入图片描述

    • 即选最小权值的结点
  • 时间复杂度

    O ( ∣ V ∣ 2 ) O(|V|^2) O(V2),适用于稠密图(|E|大的)。

  • 算法的实现思想

    • 思路:

      V 0 V_0 V0开始,总共需要n-1轮处理。

      第一轮处理:循环遍历所有个结点,找到lowCast最低的,且还没加入树的顶点。

      再次循环遍历,更新还没加入的各个顶点的lowCast值。

    • 代码步骤:

      1.创建isJoin数组,初始为false,判断结点是否加入树。

      2.创建lowCost数组,用于存储到该结点的最短距离。

      3.从 v 0 v_0 v0开始,将与其连接的权值加入到lowCost数组中。

      4.遍历lowCast数组,找到最小值,将其加入树中,并继续遍历与其相连的边。

5.1.2 Kruskal算法
  • 定义

    每次选则一条权值最小的边,使这条边的两头连通(原本已经连通的不选),直到所有结点都连通。

    • 即每次选最小的边
  • 时间复杂度

    O ( ∣ E ∣ l o g 2 ∣ E ∣ ) O(|E|log_2|E|) O(Elog2E),适用于边稀疏图。

  • 算法的实现思想

    • 思路:

      初始:将各条边按权值排序。

      共执行e轮,每轮判断两个顶点是否属于同一集合,需要 O ( l o g 2 e ) O(log_2e) O(log2e)

5.1.3 最小生成树代码
A.邻接矩阵
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>#define V 5 // 图的顶点数// 找到距离集合最近的顶点
int min_key(int key[], bool mst_set[]) {int min = INT_MAX, min_index;for (int v = 0; v < V; v++) {if (mst_set[v] == false && key[v] < min) {min = key[v];min_index = v;}}return min_index;
}// 打印最小生成树
void print_mst(int parent[], int graph[V][V]) {printf("Edge   Weight\n");for (int i = 1; i < V; i++)printf("%d - %d    %d \n", parent[i], i, graph[i][parent[i]]);
}// Prim算法
void prim_mst(int graph[V][V]) {int parent[V]; // 存放最小生成树的父节点int lowCost[V];    // 用于存放顶点到最小生成树的最小权重bool isJoin[V]; // 记录顶点是否已经加入最小生成树for (int i = 0; i < V; i++) {lowCost[i] = INT_MAX;isJoin[i] = false;}lowCost[0] = 0; // 初始点为0parent[0] = -1; // 根节点没有父节点for (int count = 0; count < V - 1; count++) {int u = min_key(lowCost, isJoin);isJoin[u] = true;for (int v = 0; v < V; v++) {if (graph[u][v] && !isJoin[v] && graph[u][v] < lowCost[v]) {parent[v] = u;lowCost[v] = graph[u][v];}}}print_mst(parent, graph);
}// Kruskal算法// 结构体用于表示边
struct Edge {int src, dest, weight;
};// 比较函数,用于排序
int compare(const void* a, const void* b) {return ((struct Edge*)a)->weight - ((struct Edge*)b)->weight;
}// 查找函数,用于查找集合的根节点
int find(int parent[], int i) {if (parent[i] == -1)return i;return find(parent, parent[i]);
}// 合并函数,用于合并两个集合
void Union(int parent[], int x, int y) {int xset = find(parent, x);int yset = find(parent, y);parent[xset] = yset;
}// Kruskal算法
void kruskal_mst(int graph[V][V]) {struct Edge result[V]; // 用于存放最小生成树的边int e = 0; // 表示result数组中的边数int i = 0; // 表示当前考虑的边// 边集合struct Edge edges[V*V];for (int u = 0; u < V; u++) {for (int v = u + 1; v < V; v++) {if (graph[u][v] != 0) {edges[e].src = u;edges[e].dest = v;edges[e].weight = graph[u][v];e++;}}}// 根据权重对边进行排序qsort(edges, e, sizeof(edges[0]), compare);int parent[V]; // 用于记录每个顶点的父节点for (int v = 0; v < V; v++)parent[v] = -1;// 最小生成树的边数小于V-1时继续while (i < V - 1 && e > 0) {struct Edge next_edge = edges[--e];// 检查是否会产生环int x = find(parent, next_edge.src);int y = find(parent, next_edge.dest);if (x != y) {result[i++] = next_edge;Union(parent, x, y);}}printf("Edge   Weight\n");for (int i = 0; i < V - 1; i++)printf("%d - %d    %d \n", result[i].src, result[i].dest, result[i].weight);
}// 测试主函数
int main() {int graph[V][V] = {{0, 2, 0, 6, 0},{2, 0, 3, 8, 5},{0, 3, 0, 0, 7},{6, 8, 0, 0, 9},{0, 5, 7, 9, 0}};printf("Prim's Minimum Spanning Tree:\n");prim_mst(graph);printf("\nKruskal's Minimum Spanning Tree:\n");kruskal_mst(graph);return 0;
}

在这里插入图片描述

B.邻接表
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <limits.h>#define MaxVertexNum 100
#define INF 9999typedef struct ArcNode {int adjvex;int weight;struct ArcNode *next;
} ArcNode;typedef struct VNode {int data;ArcNode *first;
} VNode, AdjList[MaxVertexNum];typedef struct {AdjList vertices;int vexnum, arcnum;
} ALGraph;void InitALGraph(ALGraph *G, int vexnum, int arcnum) {G->vexnum = vexnum;G->arcnum = arcnum;for (int i = 0; i < vexnum; i++) {G->vertices[i].data = i;G->vertices[i].first = NULL;}
}void AddEdgeUndirectedALGraph(ALGraph *G, int v1, int v2, int weight) {ArcNode *arcNode1 = (ArcNode *)malloc(sizeof(ArcNode));arcNode1->adjvex = v2;arcNode1->weight = weight;arcNode1->next = G->vertices[v1].first;G->vertices[v1].first = arcNode1;ArcNode *arcNode2 = (ArcNode *)malloc(sizeof(ArcNode));arcNode2->adjvex = v1;arcNode2->weight = weight;arcNode2->next = G->vertices[v2].first;G->vertices[v2].first = arcNode2;
}void PrintALGraph(ALGraph G) {for (int i = 0; i < G.vexnum; i++) {printf("%d -> ", G.vertices[i].data);ArcNode *p = G.vertices[i].first;while (p != NULL) {printf("(%d, %d) ", p->adjvex, p->weight);p = p->next;}printf("\n");}
}// Prim算法
void Prim(ALGraph G) {int lowCost[G.vexnum], parent[G.vexnum];bool inMST[G.vexnum];for (int i = 0; i < G.vexnum; i++) {lowCost[i] = INF;parent[i] = -1;inMST[i] = false;}lowCost[0] = 0;for (int i = 0; i < G.vexnum - 1; i++) {int minIndex, minCost = INF;for (int j = 0; j < G.vexnum; j++) {if (!inMST[j] && lowCost[j] < minCost) {minCost = lowCost[j];minIndex = j;}}inMST[minIndex] = true;ArcNode *p = G.vertices[minIndex].first;while (p != NULL) {if (!inMST[p->adjvex] && p->weight < lowCost[p->adjvex]) {lowCost[p->adjvex] = p->weight;parent[p->adjvex] = minIndex;}p = p->next;}}printf("Edge   Weight\n");for (int i = 1; i < G.vexnum; i++) {printf("%d - %d    %d\n", parent[i], i, lowCost[i]);}
}// Kruskal算法
typedef struct {int src, dest, weight;
} Edge;int find(int parent[], int i) {if (parent[i] == -1)return i;return find(parent, parent[i]);
}void Union(int parent[], int x, int y) {int xset = find(parent, x);int yset = find(parent, y);parent[xset] = yset;
}int compare(const void *a, const void *b) {return ((Edge *)a)->weight - ((Edge *)b)->weight;
}void Kruskal(ALGraph G) {Edge result[G.arcnum];Edge edges[G.arcnum];int parent[G.vexnum];int e = 0;for (int i = 0; i < G.vexnum; i++) {ArcNode *p = G.vertices[i].first;while (p != NULL) {if (i < p->adjvex) {edges[e].src = i;edges[e].dest = p->adjvex;edges[e].weight = p->weight;e++;}p = p->next;}}qsort(edges, G.arcnum, sizeof(Edge), compare);for (int i = 0; i < G.vexnum; i++)parent[i] = -1;int i = 0, j = 0;while (i < G.vexnum - 1 && j < G.arcnum) {Edge next_edge = edges[j++];int x = find(parent, next_edge.src);int y = find(parent, next_edge.dest);if (x != y) {result[i++] = next_edge;Union(parent, x, y);}}printf("Edge   Weight\n");for (int i = 0; i < G.vexnum - 1; i++) {printf("%d - %d    %d\n", result[i].src, result[i].dest, result[i].weight);}
}int main() {ALGraph G;InitALGraph(&G, 5, 7);AddEdgeUndirectedALGraph(&G, 0, 1, 2);AddEdgeUndirectedALGraph(&G, 0, 3, 6);AddEdgeUndirectedALGraph(&G, 1, 2, 3);AddEdgeUndirectedALGraph(&G, 1, 3, 8);AddEdgeUndirectedALGraph(&G, 1, 4, 5);AddEdgeUndirectedALGraph(&G, 2, 4, 7);AddEdgeUndirectedALGraph(&G, 3, 4, 9);PrintALGraph(G);printf("Prim's Minimum Spanning Tree:\n");Prim(G);printf("\nKruskal's Minimum Spanning Tree:\n");Kruskal(G);return 0;
}

在这里插入图片描述

这篇关于【数据结构】最小生成树(Prim算法、Kruskal算法)解析+完整代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/944452

相关文章

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

SpringBoot多数据源配置完整指南

《SpringBoot多数据源配置完整指南》在复杂的企业应用中,经常需要连接多个数据库,SpringBoot提供了灵活的多数据源配置方式,以下是详细的实现方案,需要的朋友可以参考下... 目录一、基础多数据源配置1. 添加依赖2. 配置多个数据源3. 配置数据源Bean二、JPA多数据源配置1. 配置主数据

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot中配置Redis连接池的完整指南

《SpringBoot中配置Redis连接池的完整指南》这篇文章主要为大家详细介绍了SpringBoot中配置Redis连接池的完整指南,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以... 目录一、添加依赖二、配置 Redis 连接池三、测试 Redis 操作四、完整示例代码(一)pom.

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三