opencv基础篇 ——(九)图像几何变换

2024-04-28 18:36

本文主要是介绍opencv基础篇 ——(九)图像几何变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        图像几何变换是通过对图像的几何结构进行变换来改变图像的形状、大小、方向或者透视关系。常见的图像几何变换包括缩放、旋转、平移、仿射变换和透视变换等。下面对这些几何变换进行简要介绍:

  1. 矩阵的转置(transpose ): 对于图像来说,它可以将图像的行和列进行交换。转置后图像的高度和宽度也将互换。

  2. 镜像变换(flip):它可以沿水平、垂直或两个方向同时对图像进行翻转。

  3. 缩放(Resize): 缩放是改变图像尺寸大小的一种变换操作。可以按比例缩小或放大图像。在 OpenCV 中,可以使用 cv::resize 函数实现图像的缩放操作。

  4. 旋转(Rotation): 旋转是围绕图像的中心点或指定点进行角度旋转的操作。可以实现任意角度的旋转。在 OpenCV 中,可以使用 cv::getRotationMatrix2Dcv::warpAffine 函数实现图像的旋转操作。

  5. 平移(Translation): 平移是沿着图像的水平和垂直方向移动图像的操作。可以将图像向左、向右、向上或向下平移。在 OpenCV 中,可以使用仿射变换矩阵来实现图像的平移操作。

  6. 仿射变换(Affine Transformation): 仿射变换是包括平移、旋转、缩放和剪切等操作的一种线性变换。可以通过变换矩阵来描述。在 OpenCV 中,可以使用 cv::getAffineTransform 函数和 cv::warpAffine 函数实现仿射变换。

  7. 透视变换(Perspective Transformation): 透视变换是用于处理图像的透视失真的变换操作。常用于校正摄像头捕捉的斜视图像。在 OpenCV 中,可以使用 cv::getPerspectiveTransform 函数和 cv::warpPerspective 函数实现透视变换。

        这些几何变换技术在图像处理和计算机视觉中具有广泛的应用,可以用于图像校正、对象检测、图像配准等任务。在实际应用中,常常需要结合多种几何变换来实现复杂的图像处理效果。

矩阵的转置(transpose

        图像的转置就是将图像像素的x坐标和y坐标互换。这样将改变图像的高度和宽度,转置后图像的高度和宽度也将互换。

        函数原型:

void cv::transpose(InputArray src, OutputArray dst)

        函数可描述为: 

                dst(i,j)=src(j,i)

镜像变换(flip)

        它可以沿水平、垂直或两个方向同时对图像进行翻转。

函数原型:

void cv::flip(InputArray src, OutputArray dst, int flipCode)
  • flipCode:指定翻转操作的方式。
    • 当 flipCode > 0 时,沿着 x 轴翻转(水平翻转)。
    • 当 flipCode = 0 时,沿着 y 轴翻转(垂直翻转)。
    • 当 flipCode < 0 时,同时沿着 x 轴和 y 轴翻转(水平和垂直同时翻转)。       

函数可描述为: 

可以配合transpose 实现简单的旋转,如下面代码实现90、180、270度的旋转:

    if (degree == 90) {cv::transpose(src, desc);cv::flip(desc, desc, 1);} else if (degree == 180) {cv::flip(src, desc, -1);} else if (degree == 270) {cv::transpose(src, desc);cv::flip(desc, desc, 0);}

缩放(Resize)

        cv::resize 用于调整图像大小的函数,它可以将输入图像按指定的缩放因子或目标尺寸进行放大或缩小,生成一个新的尺寸不同的输出图像。该函数在图像处理、计算机视觉以及需要调整图像分辨率的各类应用中广泛使用。

函数原型

cv::resize(InputArray src,OutputArray dst,Size dsize,double fx = 0,double fy = 0,int interpolation = INTER_LINEAR
);
  • int interpolation (默认为 INTER_LINEAR): 插值方法,用于决定如何计算新像素位置的值。可选值包括:

    • INTER_NEAREST: 最近邻插值(快速,但可能会出现锯齿)。
    • INTER_LINEAR: 双线性插值(平滑,适用于大部分情况)。
    • INTER_AREA: 使用像素区域关系进行重采样(保持图像面积,适合缩小图像)。
    • INTER_CUBIC: 三次样条插值(较慢,但更平滑)。
    • INTER_LANCZOS4: 兰索斯插值(最慢,最高质量,尤其适用于大幅图像缩放)。

使用示例

cv::Mat inputImage; // 假设已经加载了输入图像cv::Mat resizedImage;
cv::resize(inputImage, resizedImage, cv::Size(640, 480)); // 指定目标尺寸为 640x480// 或者按比例缩放
cv::resize(inputImage, resizedImage, {}, 0.5, 0.5); // 缩小至原图一半大小// 现在 resizedImage 存储了调整大小后的图像

旋转(Rotation)

        根据指定的旋转中心、旋转角度和可选的缩放因子通过getRotationMatrix2D 函数生成一个2x3的旋转变换矩阵,该矩阵可以与 cv::warpAffine() 函数结合使用,实现图像的旋转操作。

使用示例

cv::Mat inputImage; // 假设已经加载了输入图像
cv::Point2f center(inputImage.cols / 2.0f, inputImage.rows / 2.0f); // 设置旋转中心为图像中心double angle = 45.0 * CV_PI / 180.0; // 转换为弧度,逆时针旋转45度
double scale = 1.0; // 不进行缩放cv::Mat rotMat = cv::getRotationMatrix2D(center, angle, scale);// 接下来可以使用 rotMat 与 cv::warpAffine() 函数配合,实现图像的实际旋转操作
cv::Mat rotatedImage;
cv::warpAffine(inputImage, rotatedImage, rotMat, inputImage.size());

平移(Translation)

        图像平移是一种常见的图像处理操作,它将图像中的所有像素沿着指定的方向移动一定的距离。在 OpenCV 中,可以通过仿射变换来实现图像的平移。

下面是一个简单的步骤来实现图像的平移:

  1. 定义平移矩阵:首先,需要定义一个平移矩阵,它是一个 2x3 的矩阵,用于指定平移的距离。对于二维图像,平移矩阵的形式如下:

 1, 0, dx

 0, 1, dy

     2.应用仿射变换:接下来,使用 cv::warpAffine 函数来应用定义的平移矩阵,实现图像的平移。

使用示例

#include <opencv2/opencv.hpp>int main() {// 读取图像cv::Mat image = cv::imread("image.jpg");// 定义平移矩阵cv::Mat M = (cv::Mat_<double>(2,3) << 1, 0, 100, 0, 1, 50); // 在 x 方向上平移 100 像素,在 y 方向上平移 50 像素// 应用仿射变换cv::Mat translatedImage;cv::warpAffine(image, translatedImage, M, image.size());// 显示原始图像和平移后的图像cv::imshow("Original Image", image);cv::imshow("Translated Image", translatedImage);cv::waitKey(0);return 0;
}

仿射变换(Affine Transformation)

        仿射变换是一种特殊的平面几何变换,包括平移、旋转、缩放和剪切(shear),但不包括透视效应。该函数根据提供的三对对应点生成一个2x3的仿射变换矩阵,该矩阵可以与 cv::warpAffine() 函数结合使用,实现图像的仿射变换。

仿射变换步骤:

  1. 计算仿射变换矩阵: 根据给定的源图像中三个点 src 与目标图像中对应三个点 dst,计算出一个2x3的仿射变换矩阵。该矩阵描述了从源图像到目标图像的线性变换关系,可以应用于整个图像,使得图像中所有点都按照仿射变换规则进行映射。

  2. 返回结果: 返回计算得到的仿射变换矩阵,类型为 cv::Mat,大小为 2x3,元素类型通常为 CV_64F(双精度浮点数)。

使用示例

cv::Point2f srcPts[3] = { /* 三个源图像对应点坐标 */ };
cv::Point2f dstPts[3] = { /* 三个目标图像对应点坐标 */ };cv::Mat affineTransform = cv::getAffineTransform(srcPts, dstPts);// 接下来可以使用 affineTransform 与 cv::warpAffine() 函数配合,实现图像的实际仿射变换操作
cv::Mat transformedImage;
cv::warpAffine(inputImage, transformedImage, affineTransform, inputImage.size());

透视变换(Perspective Transformation)

        透视变换是一种复杂的二维几何变换,能够模拟真实世界中物体因距离差异而产生的远小近大的透视效果,常用于图像的校正、拼接、虚拟现实(VR)、增强现实(AR)等应用。

透视变换步骤:

  1. 计算透视变换矩阵: 根据给定的源四边形顶点 src 和目标四边形顶点 dst,使用最小二乘法计算出一个3x3的透视变换矩阵。该矩阵描述了从源四边形到目标四边形的线性变换关系,可以应用于整个图像,使得图像中所有点都按照透视变换规则进行映射。

  2. 返回结果: 返回计算得到的透视变换矩阵,类型为 cv::Mat,大小为 3x3,元素类型通常为 CV_64F(双精度浮点数)。

使用示例

cv::Point2f srcPts[4] = { /* 四个源图像顶点坐标 */ };
cv::Point2f dstPts[4] = { /* 四个目标图像顶点坐标 */ };cv::Mat perspTransf = cv::getPerspectiveTransform(srcPts, dstPts);// 接下来可以使用 perspTransf 与 cv::warpPerspective() 函数配合,实现图像的实际透视变换操作
cv::Mat transformedImage;
cv::warpPerspective(inputImage, transformedImage, perspTransf, inputImage.size());

这篇关于opencv基础篇 ——(九)图像几何变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943958

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在