3D视觉(六):PnP问题(pespective-n-point)

2024-04-28 18:32

本文主要是介绍3D视觉(六):PnP问题(pespective-n-point),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

3D视觉(六):PnP问题(pespective-n-point)

PnP问题,是指已知3D点(x, y, z)及其在相机上的投影(u,v),求解相机位姿变换R、T。
投影方程可表示为:
在这里插入图片描述这里K为相机内参矩阵,是已知的。我们要做的就是,从n对这样的2D-3D对应关系中,恢复出相机姿态变换,即旋转矩阵R和平移向量t。

文章目录

  • 3D视觉(六):PnP问题(pespective-n-point)
  • 一、算法原理
  • 二、实验过程
  • 三、源码
  • 四、项目链接

一、算法原理

典型的PnP问题求解方式有很多种,例如P3P、直接线性变换DLT、EPnP、UPnP,另外还有非线性的Bundle Adjustment。下面简单推导一下直接线性变换DLT的原理。

考虑某个空间点P,它的齐次坐标为P=(X, Y, Z, 1).T,投影到图像中得到特征点x1=(u1, v1, 1).T。我们定义增广矩阵 [R|t] 为一个3*4矩阵,模型的数学表达式为:

在这里插入图片描述
用最后一行把s消去,得到两个约束:

在这里插入图片描述
为简化表示,定义T的行向量:

在这里插入图片描述
则上面两个约束可以转化成矩阵形式:

在这里插入图片描述
可以看到,每个特征点能提供两个关于旋转平移矩阵T的线性约束。假设一共拥有N个特征点,则可列出如下线性方程组:

在这里插入图片描述
旋转平移矩阵T一共有12维,因此最少通过6对匹配点即可实现矩阵T的线性求解,这种方法称为DLT。当匹配点大于6对时,也可以使用SVD等方法对超定方程求最小二乘解。

二、实验过程

利用人脸关键点2D图像坐标,和3D人脸模板关键点坐标,求解头部姿态。

人脸2D关键点图像坐标如下:

在这里插入图片描述
在这里插入图片描述
3D人脸模板关键点的3D坐标如下:

在这里插入图片描述
利用cv::solvePnP函数,求解位姿变换结果:

在这里插入图片描述
头部姿态可视化效果如下:

在这里插入图片描述

三、源码

#include <opencv2/opencv.hpp>using namespace std;
using namespace cv;// reference: https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/int main(int argc, char **argv)
{// Read input imagecv::Mat im = cv::imread("../headPose.jpg");cout << "img cols and rows: " << im.cols << "  " << im.rows << endl;// 2D image points coordinate. If you change the image, you need to change vectorstd::vector<cv::Point2d> image_points;image_points.push_back( cv::Point2d(359, 391) );    // Nose tipimage_points.push_back( cv::Point2d(399, 561) );    // Chinimage_points.push_back( cv::Point2d(337, 297) );    // Left eye left cornerimage_points.push_back( cv::Point2d(513, 301) );    // Right eye right cornerimage_points.push_back( cv::Point2d(345, 465) );    // Left Mouth cornerimage_points.push_back( cv::Point2d(453, 469) );    // Right mouth corner// 3D model points coordinate.std::vector<cv::Point3d> model_points;model_points.push_back(cv::Point3d(0.0f, 0.0f, 0.0f));               // Nose tipmodel_points.push_back(cv::Point3d(0.0f, -330.0f, -65.0f));          // Chinmodel_points.push_back(cv::Point3d(-225.0f, 170.0f, -135.0f));       // Left eye left cornermodel_points.push_back(cv::Point3d(225.0f, 170.0f, -135.0f));        // Right eye right cornermodel_points.push_back(cv::Point3d(-150.0f, -150.0f, -125.0f));      // Left Mouth cornermodel_points.push_back(cv::Point3d(150.0f, -150.0f, -125.0f));       // Right mouth corner// Camera internals parameter matrix.// Approximate focal length.// Assuming no lens distortion.double focal_length = im.cols; Point2d center = cv::Point2d(im.cols/2, im.rows/2);cv::Mat camera_matrix = (cv::Mat_<double>(3,3) << focal_length, 0, center.x, 0 , focal_length, center.y, 0, 0, 1);cv::Mat dist_coeffs = cv::Mat::zeros(4,1,cv::DataType<double>::type); cout << endl << "Approximate Camera Matrix: " << endl << camera_matrix << endl;cout << endl << "Approximate Distort Coeffs: " << endl << dist_coeffs.t() << endl << endl;// Output rotation and translation, Rotation is in axis-angle form and matrix form.cv::Mat rotation_vector; cv::Mat rotation_matrix; cv::Mat translation_vector;// Solve for pose.// The output result of cv::solvepnp function is a rotation vector, which needs to be converted into a matrix by Rodrigues formula.cv::solvePnP(model_points, image_points, camera_matrix, dist_coeffs, rotation_vector, translation_vector);cv::Rodrigues(rotation_vector, rotation_matrix);cout << "Rotation Vector: " << endl << rotation_vector << endl << endl;cout << "Rotation Matrix: " << endl << rotation_matrix << endl << endl;cout << "Translation Vector:" << endl << translation_vector << endl << endl;// Project a 3D point (0, 0, 1000.0) onto the image plane, we use this to draw a line sticking out of the nose.vector<Point3d> nose_end_point3D;vector<Point2d> nose_end_point2D;nose_end_point3D.push_back(Point3d(0,0,1000.0));projectPoints(nose_end_point3D, rotation_vector, translation_vector, camera_matrix, dist_coeffs, nose_end_point2D);cout << "project results: " << nose_end_point2D << endl << endl;// Draw landmark points and projecting linefor(int i=0; i < image_points.size(); i++){circle(im, image_points[i], 3, Scalar(0, 255, 255), -1);}cv::line(im,image_points[0], nose_end_point2D[0], cv::Scalar(0, 0, 255), 3);// Display image.cv::imshow("im", im);cv::waitKey(0);cv::imwrite("../result.png", im);}

四、项目链接

如果代码跑不通,或者想直接使用数据集,可以去下载项目链接:
https://blog.csdn.net/Twilight737

这篇关于3D视觉(六):PnP问题(pespective-n-point)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943951

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符