大象机器人开源六轴协作机械臂myCobot 320 手机摄影技术!

本文主要是介绍大象机器人开源六轴协作机械臂myCobot 320 手机摄影技术!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

有没有遇到过这样的情况:当你手持手机或相机准备拍摄视频时,心中已经构想了完美的画面,但却因为实际的限制无法捕捉到理想中的角度?这种情况可能会让人感到挫折。例如,如果想要从地面一只蚂蚁的视角拍摄,镜头需要与蚂蚁处于同一水平线上,这在操作上不仅困难,而且往往难以实现。

尽管目前市场上有许多稳定设备如平衡环架(gimbal)来辅助拍摄,以求达到稳定和多角度的拍摄效果,但在此篇文章中,我将探索一种独特的解决方案:通过将手机安装在机械臂的末端来进行拍摄,以实现那些传统方法难以捕捉的特殊视角。此次尝试不仅旨在克服拍摄过程中的物理限制,而且也期望通过技术的创新来开拓我们对摄影角度的想象和实践。

设备

myCobot 320 M5stack

myCobot 320,一款具备六自由度的协作型机械臂,凭借其独特的设计和高精度伺服电机成为了领域内的亮点。这款机械臂拥有最大350mm的工作半径和最大1000g的末端负载能力,使其适用于广泛的应用场景。myCobot 320不仅支持灵活的视觉开发应用,还提供了深入的机械运动原理解析,为用户带来了12个标准的24V工业IO接口,满足不同的开发需求。

它的开放性极高,兼容大多数主流操作系统和编程语言,包括Python和ROS等,为开发者提供了极大的灵活性和自由度。无论是在教育、研发还是工业应用中,myCobot 320都能提供强大支持,使创新和应用开发更加便捷高效。

myCobot Pro phone holder

它可以安装在myCobot 320,myCobot pro 630机械臂的末端,能够稳定的固定住手机。

以上就是我们需要使用到的设备了。

初次尝试

安装手机支架

整体安装的效果图片

基础控制测试

做一个简单的尝试。

拍摄视频

给机械臂进行关节控制的编程,让我们一起看看效果如何。

尽管视频中展示的机械臂运动轨迹看似简单,但实际上,调整这些轨迹点位仍需耗费大量时间,且效果未必理想。因此,我在考虑是否存在更优解决方案,例如,通过设定几种运动模式和预先规划机械臂的拍摄路径。这不仅能够有效利用机械臂辅助拍摄,同时也提供了一种更为高效的部署方式。

编程挑战

开发需求分析

确定使用的设备如下

产品

功能

备注

myCobot 320 M5Stack

整个项目的核心搭载手机进行拍摄。

myCobot Pro Phone Holder

在机械臂的末端安装,能够保持手机的稳定

 Smart Phone

进行拍摄的设备

ios或者,安卓系统的手机

Computer

编写代码,控制机械臂,调动程序

需求:需求优化:

目标是为静态物体拍摄场景设计一系列创新的视频拍摄方式,初步计划采用三种方法:

1. 利用机械臂末端固定的手机,实现物体360°全景视频拍摄。

2. 创建一种画面效果,从远处平缓推进至物体近前,模拟“拉近镜头”的效果。

3. 实现机械臂末端的快速旋转与移动,捕捉动感十足的画面。

为了精准控制拍摄过程,计划利用OpenCV机器视觉算法和AVFoundation iOS框架,通过Python脚本控制机械臂的精确运动。我们将通过手机摄像头识别物体的尺寸,进而计算出机械臂末端与物体之间的理想距离。根据这个距离,设计相应的机械臂运动算法,确保拍摄过程中能够获得最佳画面效果。

YOLO视觉算法

为了节省时间,我们将不会自行训练机器视觉算法来识别特定物体。相反,我们直接采用其他开发者已经训练优化的YOLOv5库,以实现对目标物体的准确检测。

import cv2
import torch
from pathlib import Path
from models.experimental import attempt_load
from utils.general import non_max_suppression, scale_coords
from utils.torch_utils import select_device, time_synchronizeddef detect_apples(img_path):device = select_device('')weights = 'yolov5s.pt'model = attempt_load(weights, map_location=device)img0 = cv2.imread(img_path)  # BGRimg = img0[:, :, ::-1]  # RGBimg = torch.from_numpy(img).to(device)img = img.float()  # uint8 to fp16/32img /= 255.0  # 0 - 255 to 0.0 - 1.0if img.ndimension() == 3:img = img.unsqueeze(0)# Inferencet1 = time_synchronized()pred = model(img)[0]# Apply NMSpred = non_max_suppression(pred, 0.4, 0.5, classes=None, agnostic=False)t2 = time_synchronized()print(f'Inference time: {(t2 - t1):.3f}s')# Process detectionsfor i, det in enumerate(pred):  # detections per imagegn = torch.tensor(img0.shape)[[1, 0, 1, 0]]  # normalization gain whwhif len(det):det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()for *xyxy, conf, cls in reversed(det):label = f'{model.names[int(cls)]} {conf:.2f}'plot_one_box(xyxy, img0, label=label, color=(255, 0, 0))return img0def plot_one_box(xyxy, img, color=None, label=None, line_thickness=None):# Plots one bounding box on image imgtl = (line_thickness or round(0.002 * max(img.shape[0:2])) + 1)  # line/font thicknesscolor = color or [random.randint(0, 255) for _ in range(3)]c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)if label:tf = max(tl - 1, 1)  # font thicknesst_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filledcv2.putText(img,label,(c1[0], c1[1] - 2),0,tl / 3,[225, 255, 255],thickness=tf,lineType=cv2.LINE_AA,)return imgif __name__ == '__main__':img_path = 'test_image.jpg'  # 输入你的图像路径result_img = detect_apples(img_path)cv2.imshow('Result', result_img)cv2.waitKey(0)cv2.destroyAllWindows()

保留识别物体的尺寸的数据,之后要用在别的地方上。

机械臂运动控制算法

机械臂的控制方法

# 这个方法控制机械臂的关节进行运动
mc.send_angles([angle_list],speed)# 这个方法用坐标控制机械臂在空间上进行运动
mc.send_coords([coords_list],speed,mode)example:
mc.send_angles([0,0,0,0,0,0],100)
time.sleep(2)
mc.send_coords([(-3.6), 30.32, (-45.79), (-46.84), 97.38, 0.35],100,1)

获得物体的尺寸数据之后,定义机械臂末端距离物体的合理位置

def calculate_angles_for_distance(distance):# 根据理想距离计算机械臂的关节角度# 这里的计算需要根据实际情况和物理参数进行调整return [0, -10, distance * 0.1, 0, 30, 0]  def calculate_adjusted_angles(action_angles):# 基于特定动作后可能需要的坐标调整计算新的角度# 这里仅为示例,具体逻辑根据需要调整return [angle * 1.1 for angle in action_angles]  

再选择模式对应的运动控制

#360全景拍摄
# 定义具体的拍摄模式
def shoot_mode_360(ideal_distance):print("执行360°全景拍摄模式")# 首先,移动到理想拍摄位置move_to_ideal_position(ideal_distance)# 处理理想距离ideal_ratio =  ratio# 执行360°全景拍摄的特定动作mc.send_angles([0, 0, 0, 0, 0, 0], speed=15)time.sleep(1)mc.send_coords([angle * ratio for angle in angles_list]
,15)time.sleep(1)mc.send_coords([angle * ratio for angle in angles_list]
,15)time.sleep(1)mc.send_coords([angle * ratio for angle in angles_list]
,15)

手机相机的调用

在开发过程中,尝试调用手机摄像头接口以实现自动化拍摄功能,我遇到了一系列挑战。作为我的第一次深入探索AVFoundation iOS框架,目标是激活并控制手机的摄像头,我发现自己还未能完全成功实现这一功能。当前的难点主要集中在如何准确调用摄像头进行视频拍摄,以及在拍摄过程中如何通过软件调整来补偿图像的可能拉伸,这需要对机械臂的运动进行精细控制。

这些问题标志着我后续研究的重点方向,需要我继续深入学习AVFoundation框架的使用,特别是其控制摄像头的具体方法,并探索如何将这些控制整合到机械臂的运动调整中,以确保最终拍摄出的视频质量符合预期。

总结

随着这次项目记录的结束,我意识到虽然项目尚有诸多不足,但这次尝试将两个独立设备在不同的框架下协同工作,对我来说仍是一次宝贵的经验。确实,整个项目目前尚未达到我心中的理想状态。然而,我认为这个项目探索的方向极具潜力,考虑到市面上已经存在能够拍摄出令人赞叹效果的专业摄影机械臂,这强化了我对项目潜在价值的信念。

机械臂的应用已经广泛渗透到我们的日常生活中,无论是在工业生产、日常服务,还是在艺术创作领域,都发挥着越来越重要的作用。随着人工智能技术的不断进步和普及,AI与机器人的结合无疑将成为未来技术发展的重要趋势。我对机器人技术的未来发展抱有极大的期待,相信未来它们将在更多领域发挥出惊人的能力和创造力。

如果你对我的项目感兴趣,或者有任何想法和建议,非常欢迎与我交流。你的反馈将对我继续改进和完善这个项目提供宝贵的帮助。

这篇关于大象机器人开源六轴协作机械臂myCobot 320 手机摄影技术!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943785

相关文章

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

系统架构设计师: 信息安全技术

简简单单 Online zuozuo: 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo 简简单单 Online zuozuo :本心、输入输出、结果 简简单单 Online zuozuo : 文章目录 系统架构设计师: 信息安全技术前言信息安全的基本要素:信息安全的范围:安全措施的目标:访问控制技术要素:访问控制包括:等保

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

HomeBank:开源免费的个人财务管理软件

在个人财务管理领域,找到一个既免费又开源的解决方案并非易事。HomeBank 正是这样一个项目,它不仅提供了强大的功能,还拥有一个活跃的社区,不断推动其发展和完善。 开源免费:HomeBank 是一个完全开源的项目,用户可以自由地使用、修改和分发。用户友好的界面:提供直观的图形用户界面,使得非技术用户也能轻松上手。数据导入支持:支持从 Quicken、Microsoft Money

前端技术(七)——less 教程

一、less简介 1. less是什么? less是一种动态样式语言,属于css预处理器的范畴,它扩展了CSS语言,增加了变量、Mixin、函数等特性,使CSS 更易维护和扩展LESS 既可以在 客户端 上运行 ,也可以借助Node.js在服务端运行。 less的中文官网:https://lesscss.cn/ 2. less编译工具 koala 官网 http://koala-app.