R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题

本文主要是介绍R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引入

GEO DataSets上,某些Series是由多个series组成的,比如GSE6834,由六个Series组成:

This SuperSeries is composed of the following SubSeries:
Less… Less…
GSE6771 Temporal Cortex Control (mesial temporal lobe epilepsy control)
GSE6773 Temporal neocortex mesial temporal lobe epilepsy
GSE6774 Temporal Cortex Control (Alzheimer’s disease control)
GSE6774 Temporal Cortex Alzheimer’s Disease
GSE6777 Cerebellum Alzheimer’s Disease
GSE6778 Cerebellum Control (Alzheimer’s disease control)

每个Series又包括10个GSM,要知道一般都是实验组对照组在同一个矩阵中才能进行差异表达分析。那么举个例子,GSE6774和GSE6774,一个对照一个实验,两个矩阵怎么分析呢?

txt转为xlsx

很多人第一反应可能是将两个TXT合二为一,这样做可以,尤其是多个Series,这样还可以利用批处理减轻工作量,但是中间涉及到对齐、插入制表符等问题,很可能出错。不如借助Excel,直接在Excel中复制粘贴即可完成(Series比较少的话)。首先将txt转为xlsx,利用Java或者Python等脚本都可以完成,下面给出Python版的:

# coding=utf-8
import xlsxwriter
import pandas as pdworkbook = xlsxwriter.Workbook(r'D:\Alzheimer\Series\GSE6834\6780.xlsx') 
worksheet= workbook.add_worksheet(u'matrix')
txt=open(r'D:\Alzheimer\Series\GSE6834\6778.txt')m=0
n=0for m in range(1,8690):print(m);line=txt.readline()data=line.split('\t')for n in range(1,11):worksheet.write(m-1,n-1,data[n-1])worksheet.write(m-1,10,data[10][0:-1]) workbook.close()

注意worksheet.write(m-1,10,data[10][0:-1])这一行,由于每个数据带一个\t,但每一行最后一个还额外多一个\n,所以这一个\n要特殊处理。
转化为TXT后,直接复制粘贴便可合二为一。

在这里插入图片描述

xlsx到R中的数据框

xlsx做好了,怎么将其变成我们需要的数据框呢?
思路一:将其转化为txt,也就是再变回去。但是转化时,需要加入\t, \n等符号,也是比较麻烦,容易出错。
思路二:在R中直接用readxl包导入xlsx为数据框。乍一看貌似这个方法最简单,但是有一个问题:xlsx里的数据是文本格式,不能直接用于数据分析。否则,就会出现报错:

> fit=lmFit(exp_matrix, design)
Error in rowMeans(y$exprs, na.rm = TRUE) : 'x' must be numeric

要想批量将Excel中文本格式的数字转化成数字格式,一般的办法是转成csv,然后再转回来。不过,既然转成csv了,不如直接用R导入就可以了。
思路三:将xlsx转成csv,然后用read.csv()导入。
导入之后观察实验矩阵:在这里插入图片描述
发现数据框第一列居然是探针名字,而不是想象中探针名字作为数据框的行名。所以我们还需要一步,修改下这个数据框。

更改数据框行名(rownames)

首先,我们需要知道更改数据框行名的函数是row.names()。这个函数的参数是向量,所以我们需要把数据框第一列转化成向量;如果直接将数据框或者矩阵作为行名会报错Error in `.rowNamesDF<-`(x, value = value) : 'row.names'的长度不对。那么,数据框怎么转化为向量呢?中间必要的一步是矩阵。所以正确的方法是连续用两个函数as.matrix()as.vector()
另外我们还需要将第一列删除,注意删除是在赋rownames之前,否则刚刚赋好的rownames也会被删除!
这一部分代码如下:

m=as.matrix(exp_matrix[, 1])
v=as.vector(m)
exp_matrix<-exp_matrix[, -1]
row.names(exp_matrix) <- v

处理后的数据框如下:在这里插入图片描述

差异表达分析

最后贴一下这个例子中,从导入到差异表达分析的全过程:

library("reshape2")
library("hgu133plus2.db")
library("limma")setwd("D:/Alzheimer/Series/GSE6834")exp_matrix<-read.csv("6774&6775.csv",header = TRUE)
m=as.matrix(exp_matrix[, 1])
v=as.vector(m)
exp_matrix<-exp_matrix[, -1]
row.names(exp_matrix) <- v#TC_Control	Temporal Cortex Control (AD)
#TC_AD Temporal Cortex Alzheimer's disease
type <-c('TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_Control','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD','TC_AD')
design <- model.matrix(~ -1+factor(type,levels=c('TC_Control','TC_AD'),ordered=TRUE)) 
colnames(design) <- c('TC_Control','TC_AD')
rownames(design)=colnames(exp_matrix)fit=lmFit(exp_matrix, design)contrast.matrix=makeContrasts(TC_ControlVSTC_AD=TC_Control-TC_AD,levels=design) 
fit2 = contrasts.fit(fit, contrast.matrix) 
fit2 = eBayes(fit2)
results <- decideTests(fit2) 
vennDiagram(results)diff1 = topTreat(fit2, coef=1,p.value=0.05, n=Inf, adjust.method='BH')write.table(diff1, "diff.TC_ControlVSTC_AD.GSE6834.txt",sep = '\t',quote = F)

这篇关于R语言Python GEO DataSets多个Series进行差异基因表达分析以及导入Excel到R的问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943736

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat