window 安装大模型 chatglm-6b

2024-04-28 12:04
文章标签 安装 模型 window 6b chatglm

本文主要是介绍window 安装大模型 chatglm-6b,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

你好,我是 shengjk1,多年大厂经验,努力构建 通俗易懂的、好玩的编程语言教程。 欢迎关注!你会有如下收益:

  1. 了解大厂经验
  2. 拥有和大厂相匹配的技术等

希望看什么,评论或者私信告诉我!

文章目录

  • 一、 前言
  • 二、准备工作
    • 2.1 电脑
    • 2.2 组件安装
    • 2.3 开始安装
      • 2.3.1下载官方代码,安装Python依赖的库
      • 2.3.2 下载INT4量化后的预训练结果文件
      • 2.3.3 Windows+CPU部署方案
  • 三、总结


一、 前言

有大模型以来一直想尝试通过本地安装大模型,主要的原因是GPT众所众知的原因没有办法通过 API 访问,而国内的所谓的开发平台一方面要么不兼容 openai 的 api 要么就是价格不够友好,要么两者兼有,另外的话,开发平台也有所谓的隐私问题。另外公司内部虽然有已经部署好的开源大模型,但相应的服务中的 Temperautre 或者 Top 都已经被固定了,用起来特别没意思。

所以想自己搞一套,喜欢自己说了算。

二、准备工作

2.1 电脑

在这里插入图片描述
这是我工作使用的电脑配置,16G内存,Intel® 集成显卡。这里要吐槽一下,程序员千万不要使用 window,随便装点什么东西就很麻烦,用不了 mac 就用 linux,我这是公司电脑,后悔没早点装 unbantu 系统

2.2 组件安装

VS studio 2022
在这里插入图片描述

cmake

TDM-GCC,注意,安装的时候直接选择全部安装就好。安装完在cmd中运行”gcc -v”测试是否成功即可( 我的电脑需要重启后才能执行 gcc -v )

2.3 开始安装

因为公司电脑性能不行,所以我选择了 ChatGLM-6B,另外ChatGLM-6B完整版本需要13GB显存做推理,但是INT4量化版本只需要6GB显存即可运行,这里选择 INT4量化版

2.3.1下载官方代码,安装Python依赖的库

首先,我们需要从GitHub上下载ChatGLM的requirements.txt来帮助我们安装依赖的库。大家只需要在GitHub上下载requirements.txt即可。下载地址:https://github.com/THUDM/ChatGLM-6B
在这里插入图片描述这个文件记录了ChatGLM-6B依赖的Python库及版本,大家点击右上角Code里面有Download ZIP,下载到本地解压之后就能获取这个文件。然后执行如下命令即可:

  pip install -r requirements.txt

注意,这是从cmd进入到requirements.txt文件所在的目录执行的结果,这部分属于Python基础,就不赘述了。

需要注意的是,ChatGLM依赖HuggingFace的transformers库,尽管官方说:

使用 pip 安装依赖:pip install -r requirements.txt,其中 transformers 库版本推荐为 4.27.1,但理论上不低于 4.23.1 即可。

但是实际上,必须是4.27.1及以上的版本才可以,更低版本的transformers会出现如下错误:

AttributeError: ‘Logger’ object has no attribute “‘warning_once’”

所以,一定要查看自己的transformers版本是否正确。

另外,ChatGLM-6B依赖torch,如果你有GPU,且高于6G内存,那么建议部署GPU版本,但是需要下载支持cuda的torch,而不是默认的CPU版本的torch。具体可参考 :
关于 AssertionError: Torch not compiled with CUDA enabled 问题

2.3.2 下载INT4量化后的预训练结果文件

在上述的依赖环境安装完毕之后,大家接下来就要下载预训练结果。

INT4量化的预训练文件下载地址:https://huggingface.co/THUDM/chatglm-6b-int4/tree/main,需要魔法,如果没有魔法,可去 modelscope 搜索合适的版本

需要注意的是,在GitHub上,官方提供了模型在清华云上的下载地址,但是那个只包含预训练结果文件,即bin文件,但实际上ChatGLM-6B的运行需要模型的配置文件,即config.json等,如下图所示:

因此建议大家全部从HuggingFace上下载所有文件到本地。上述文件全部下载之后保存到本地的一个目录下即可,比如:

D:\LLM

2.3.3 Windows+CPU部署方案

我的机器不支持CUDA,所以我们直接来看CPU方式

运行部署CPU版本的INT4量化的ChatGLM-6B模型

CPU版本量化模型的代码与GPU版本稍微有点差异,代码如下:

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("D:\LLM\chatglm-6b-int4", trust_remote_code=True, revision="")
model = AutoModel.from_pretrained("D:\LLM\chatglm-6b-int4",trust_remote_code=True, revision="").float()
model = model.eval()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)

一般都会报错

在运行中遇到了如下错误提示:

No compiled kernel found.
Compiling kernels : C:\Users\在、xxx\.cache\huggingface\modules\transformers_modules\chatglm-6b-int4\quantization_kernels_parallel.c
Compiling gcc -O3 -fPIC -pthread -fopenmp -std=c99 C:\Users\xxx\.cache\huggingface\modules\transformers_modules\chatglm-6b-int4\quantization_kernels_parallel.c -shared -o C:\Users\xxx\.cache\huggingface\modules\transformers_modules\chatglm-6b-int4\quantization_kernels_parallel.so
Kernels compiled : C:\Users\xxx\.cache\huggingface\modules\transformers_modules\chatglm-6b-int4\quantization_kernels_parallel.so

CPU版本的ChatGLM-6B部署比GPU版本稍微麻烦一点,主要涉及到一个kernel的编译问题。

在安装之前,除了上面需要安装好requirements.txt中所有的Python依赖外,torch需要安装好正常的CPU版本即可。

安装这个主要是为了编译之前下载的文件中的quantization_kernels.c和quantization_kernels_parallel.c这两个文件。如果大家

那么就是这两个文件编译出问题了。那么就需要我们手动去编译这两个文件:

在C:\Users\xxx.cache\huggingface\modules\transformers_modules\chatglm-6b-int4\本地目录下进入cmd,运行如下两个编译命令:

gcc -fPIC -pthread -fopenmp -std=c99 quantization_kernels.c -shared -o quantization_kernels.so
gcc -fPIC -pthread -fopenmp -std=c99 quantization_kernels_parallel.c -shared -o quantization_kernels_parallel.so

如下图所示即为运行成功

然后就可以在C:\Users\xxx.cache\huggingface\modules\transformers_modules\chatglm-6b-int4\目录下看到下面两个新的文件:quantization_kernels_parallel.so和quantization_kernels.so。说明编译成功,后面我们手动载入即可。

在原来代码的基础上添加

model = model.quantize(bits=4, kernel_file="C:\Users\xxx\.cache\huggingface\modules\transformers_modules\chatglm-6b-int4\\quantization_kernels.so")

一行手动加载的内容。

接下来你就可以看到如下界面:
我这里把 quantization_kernels.so 放在了 D:\LLM\chatglm2-6b-int4 下面了

输出结果

你好👋!我是人工智能助手 ChatGLM2-6B,很高兴见到你,欢迎问我任何问题。

也就是CPU版本的ChatGLM-6B运行成功了!但很慢,所以可以考虑 CPP 加速!待后续输出!

三、总结

通过本文,读者可以了解到如何在个人电脑上部署ChatGLM-6B的INT4量化版本,同时作者也分享了他在安装过程中遇到的问题和解决方法,帮助读者顺利完成安装并运行大模型

这篇关于window 安装大模型 chatglm-6b的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943214

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Centos7安装JDK1.8保姆版

工欲善其事,必先利其器。这句话同样适用于学习Java编程。在开始Java的学习旅程之前,我们必须首先配置好适合的开发环境。 通过事先准备好这些工具和配置,我们可以避免在学习过程中遇到因环境问题导致的代码异常或错误。一个稳定、高效的开发环境能够让我们更加专注于代码的学习和编写,提升学习效率,减少不必要的困扰和挫折感。因此,在学习Java之初,投入一些时间和精力来配置好开发环境是非常值得的。这将为我

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}