【算法基础实验】图论-基于DFS的连通性检测

2024-04-27 07:04

本文主要是介绍【算法基础实验】图论-基于DFS的连通性检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于DFS的连通性检测

理论基础

在图论中,连通分量是无向图的一个重要概念,特别是在处理图的结构和解析图的组成时。连通分组件表示图中的一个子图,在这个子图中任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点,并且这个子图是最大的,即不能通过添加更多的顶点来增加连通性。对于有向图,这通常被称为强连通分量。

基于DFS的连通分量算法

书中4.1.6节提到的基于深度优先搜索(DFS)的连通分量算法用于识别和处理无向图中的连通分量。这个算法的基本思想是使用DFS遍历图中的每个顶点,同时记录哪些顶点是连通的。

算法步骤

  1. 初始化:为每个顶点准备一个标记数组 marked[] 来记录每个顶点是否被访问过,另外用一个数组 id[] 来记录每个顶点所属的连通分量的标识符。还需要一个计数器 count 来统计连通分量的数量。
  2. DFS遍历:从任意未被访问的顶点开始,执行DFS遍历。在遍历过程中,标记所有可达的顶点为已访问,同时将这些顶点的 id[] 设置为当前的连通分量标识符。
  3. 连通分量标识:每次在DFS遍历开始前增加连通分量计数器 count,并将遍历过程中访问的所有顶点的连通分量标识设置为这个计数器的值。
  4. 重复执行:重复上述过程,直到图中的所有顶点都被访问过。

应用

  • 图的结构分析:识别图中的独立部分或者紧密相关的群组。
  • 网络设计:确定网络中的独立组件,以优化设计和提高稳定性。
  • 社交网络:识别社交网络中的社区或者群组。

通过这种基于DFS的连通分量算法,可以有效地解析和处理图的结构,对于复杂网络的分析尤其有用。

数据结构

private boolean[] marked
private int[] id
private int count
myBag
myGraph

实验数据和算法流程

这里使用tinyG.txt来构成实验用的无向图

注意算法流程中count,marked[],id[]的变化

请添加图片描述

代码实现

import edu.princeton.cs.algs4.In;
import edu.princeton.cs.algs4.StdOut;public class myCC {private boolean[] marked;private int[] id;private int count;public myCC(myGraph G){marked = new boolean[G.V()];id = new int[G.V()];for(int s=0;s<G.V();s++){if(!marked[s]){dfs(G,s);//这里是精髓所在,每次dfs回到这里就说明互相连通的一组顶点已经完成遍历,//也就确定了一个连通分量count++;                }}}private void dfs(myGraph G, int v){marked[v] = true;id[v] = count;for(int w:G.adj(v)){if(!marked[w]){dfs(G,w);}}}public boolean connected(int v, int w){return id[v]==id[w];}public int id(int v){return id[v];}public int count(){return count;}public static void main(String[] args){myGraph G = new myGraph(new In(args[0]));myCC cc = new myCC(G);int M = cc.count();StdOut.println(M + " components");myBag<Integer>[] components = (myBag<Integer>[]) new myBag[M];for(int i=0;i<M;i++){components[i] = new myBag<Integer>();}for(int v=0;v<G.V();v++){components[cc.id(v)].add(v);}for(int i=0;i<M;i++){for(int v:components[i]) StdOut.print(v+" ");StdOut.println();}}
}

代码详解

这段代码实现了一个基于深度优先搜索(DFS)的连通分量(CC)类 myCC,用于确定无向图中所有的连通分量。下面是详细的代码解释:

类定义和变量


public class myCC {private boolean[] marked;  // 标记数组,用于标记每个顶点是否已经被访问过private int[] id;          // 每个顶点所属的连通分量标识private int count;         // 连通分量的数量
  • marked 数组用于记录图中的每个顶点是否已经被访问。
  • id 数组用于存储每个顶点所属的连通分量的ID。
  • count 用于计数图中连通分量的总数。

构造函数


public myCC(myGraph G){marked = new boolean[G.V()];id = new int[G.V()];for(int s = 0; s < G.V(); s++) {if (!marked[s]) {dfs(G, s);count++;  // 完成一个连通分量的搜索后,增加连通分量的计数}}
}

构造函数遍历图中的所有顶点,对于每个未标记的顶点,执行DFS来标记和记录所有能从该顶点访问到的顶点,这些顶点构成一个连通分量。每次DFS调用结束后,连通分量数 count 加一。

DFS 方法


private void dfs(myGraph G, int v){marked[v] = true;id[v] = count;for (int w : G.adj(v)) {if (!marked[w]) {dfs(G, w);}}
}

dfs 方法标记顶点 v 为已访问,并将其连通分量ID设置为当前的 count。然后递归地访问所有与顶点 v 直接相连的未标记顶点。

连通分量的辅助方法


public boolean connected(int v, int w) { return id[v] == id[w]; }
public int id(int v) { return id[v]; }
public int count() { return count; }

这些方法提供了:

  • connected(v, w) 检查两个顶点是否属于同一个连通分量。
  • id(v) 返回顶点 v 的连通分量ID。
  • count() 返回图中连通分量的总数。

主方法


public static void main(String[] args){myGraph G = new myGraph(new In(args[0]));myCC cc = new myCC(G);int M = cc.count();StdOut.println(M + " components");myBag<Integer>[] components = (myBag<Integer>[]) new myBag[M];for (int i = 0; i < M; i++) {components[i] = new myBag<Integer>();}for (int v = 0; v < G.V(); v++) {components[cc.id(v)].add(v);}for (int i = 0; i < M; i++) {for (int v : components[i]) StdOut.print(v + " ");StdOut.println();}
}

主方法使用 myCC 类来处理一个从文件读取的图,并输出所有的连通分量。这里,连通分量被存储在一个 myBag 数组中,每个 myBag 对象存储一个连通分量的所有顶点,然后输出每个连通分量的顶点。

这段代码是一个完整的图连通分量识别实现,使用DFS作为基本的遍历策略。

实验

代码编译

javac myCC.java

运行代码

将实验数据tinyG.txt导入代码后,myCC可以检测到3个连通分量,并逐行将连通分量中的元素打印出来

java myCC ..\data\tinyG.txt               
3 components
6 5 4 3 2 1 0
8 7
12 11 10 9

参考资料

算法(第4版)人民邮电出版社

这篇关于【算法基础实验】图论-基于DFS的连通性检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939813

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖