人工智能路径规划算法:迭代加深搜索

2024-04-27 03:52

本文主要是介绍人工智能路径规划算法:迭代加深搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迭代加深搜索(Iterative Deepening Search, IDS)是一种结合了广度优先搜索(BFS)和深度优先搜索(DFS)的搜索策略,它通过重复执行深度限制的深度优先搜索来实现。每次迭代,深度限制增加,直到达到目标节点或搜索空间耗尽。下面是 V 哥的一些理解,分享给大家。

工作原理

  • 初始化:设置深度限制为0或1,从根节点开始搜索。
  • 深度限制的DFS:执行深度优先搜索,但只搜索到当前的深度限制。如果找到目标节点,则终止搜索。
  • 迭代:如果当前深度限制下没有找到目标,则增加深度限制,再次执行深度优先搜索。
  • 终止条件:当找到目标节点或搜索空间耗尽时,停止迭代。

特点

  • 时间复杂度:IDS的时间复杂度与最优策略(BFS或DFS)相当,但通常比单独的DFS或BFS更优。
  • 空间复杂度:与DFS相同,因为它在任何时候只存储一个路径在栈上。
  • 完备性:IDS是完备的,如果存在解,它最终会找到它。
  • 最优性:与BFS相比,IDS在找到目标节点时使用的节点和边更少,但可能需要更多的时间来处理这些节点。

示例

假设我们有一个简单的树状结构,我们想要找到深度为3的节点。使用IDS,我们会这样操作:

  • 设置深度限制为1,执行DFS,不找到目标。
  • 增加深度限制到2,再次执行DFS,仍然不找到目标。
  • 增加深度限制到3,执行DFS,找到目标节点。

应用

IDS常用于搜索算法中,特别是在解谜游戏(如八数码问题)、人工智能中的路径规划问题,以及任何需要在树或图中找到特定节点的场景。

注意事项

  • IDS在实际应用中可能需要根据问题的特性进行调整,以优化性能。
  • 在某些情况下,IDS可能不如专门的BFS或DFS有效,尤其是在搜索空间非常大或目标节点非常深的情况下。

迭代加深搜索是一种实用的搜索策略,它结合了BFS和DFS的优点,提供了一种平衡时间和空间复杂度的解决方案。

在Java中实现迭代加深搜索(Iterative Deepening Search, IDS),你可以使用递归方法来执行深度限制的深度优先搜索(Depth-Limited Search, DLS)。以下是一个简单的Java实现示例,它使用了一个简单的树结构来展示如何实现IDS。

类定义

首先,我们定义了一个简单的树节点类TreeNode,用于构建树结构:

class TreeNode {String data;    // 节点存储的数据TreeNode left;  // 指向左子节点的指针TreeNode right; // 指向右子节点的指针TreeNode(String data) {this.data = data;left = null;right = null;}
}

迭代加深搜索

IterativeDeepeningSearch类中包含了执行IDS的核心方法:

public static void iterativeDeepeningSearch(TreeNode root, String target, int depthLimit) {// 检查根节点是否为空if (root == null) {return;}// 如果深度限制足够大,说明搜索空间没有限制,直接使用深度优先搜索if (depthLimit < Integer.MAX_VALUE) {depthFirstSearch(root, target, 1, depthLimit);} else {// 否则,开始迭代加深搜索int currentDepth = 1; // 当前搜索的深度boolean found = false; // 是否找到目标do {// 执行深度限制的深度优先搜索found = depthFirstSearch(root, target, currentDepth, currentDepth);// 如果当前深度没有找到目标,增加深度限制currentDepth++;} while (!found && currentDepth < Integer.MAX_VALUE); // 直到找到目标或搜索空间耗尽}
}

深度限制的深度优先搜索

depthFirstSearch是一个辅助方法,用于执行带有深度限制的DFS:

private static boolean depthFirstSearch(TreeNode node, String target, int currentDepth, int depthLimit) {// 检查节点是否为空或当前深度是否超出深度限制if (node == null || currentDepth > depthLimit) {return false;}// 如果当前节点包含目标数据,返回trueif (node.data.equals(target)) {return true;}// 否则,递归搜索左子树和右子树// 搜索时,当前深度加1return depthFirstSearch(node.left, target, currentDepth + 1, depthLimit) ||depthFirstSearch(node.right, target, currentDepth + 1, depthLimit);
}

主函数

在main函数中,我们创建了一个树结构,并调用了iterativeDeepeningSearch方法来开始搜索:

public static void main(String[] args) {// 创建树结构TreeNode root = new TreeNode("A");// ... 构建树的其他部分// 定义要搜索的目标String target = "G";// 开始迭代加深搜索,初始深度限制为1iterativeDeepeningSearch(root, target, 1);// 如果搜索过程中找到了目标,打印消息if (depthFirstSearch(root, target, 1, Integer.MAX_VALUE)) {System.out.println("Target found!");} else {System.out.println("Target not found.");}
}

在main函数的最后,我们调用了depthFirstSearch方法,这次没有深度限制,来最终确认目标是否被找到。这是因为在实际的IDS实现中,一旦确定了目标所在的最小深度,就可以无限制地搜索以找到目标。

注意

  • depthLimit参数在iterativeDeepeningSearch方法中用于控制搜索的深度。如果这个值设置为Integer.MAX_VALUE,则表示没有深度限制,搜索将退化为普通的深度优先搜索。
  • currentDepth参数在depthFirstSearch方法中用于跟踪当前的递归深度,确保搜索不会超出设定的深度限制。
  • found变量用于标记是否找到目标节点,如果找到,则终止搜索。

这个实现展示了IDS的基本思想,即通过逐渐增加深度限制来重复执行深度优先搜索,直到找到目标节点或搜索整个树。

这篇关于人工智能路径规划算法:迭代加深搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939456

相关文章

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

C++迭代器失效的避坑指南

《C++迭代器失效的避坑指南》在C++中,迭代器(iterator)是一种类似指针的对象,用于遍历STL容器(如vector、list、map等),迭代器失效是指在对容器进行某些操作后... 目录1. 什么是迭代器失效?2. 哪些操作会导致迭代器失效?2.1 vector 的插入操作(push_back,