人工智能路径规划算法:迭代加深搜索

2024-04-27 03:52

本文主要是介绍人工智能路径规划算法:迭代加深搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迭代加深搜索(Iterative Deepening Search, IDS)是一种结合了广度优先搜索(BFS)和深度优先搜索(DFS)的搜索策略,它通过重复执行深度限制的深度优先搜索来实现。每次迭代,深度限制增加,直到达到目标节点或搜索空间耗尽。下面是 V 哥的一些理解,分享给大家。

工作原理

  • 初始化:设置深度限制为0或1,从根节点开始搜索。
  • 深度限制的DFS:执行深度优先搜索,但只搜索到当前的深度限制。如果找到目标节点,则终止搜索。
  • 迭代:如果当前深度限制下没有找到目标,则增加深度限制,再次执行深度优先搜索。
  • 终止条件:当找到目标节点或搜索空间耗尽时,停止迭代。

特点

  • 时间复杂度:IDS的时间复杂度与最优策略(BFS或DFS)相当,但通常比单独的DFS或BFS更优。
  • 空间复杂度:与DFS相同,因为它在任何时候只存储一个路径在栈上。
  • 完备性:IDS是完备的,如果存在解,它最终会找到它。
  • 最优性:与BFS相比,IDS在找到目标节点时使用的节点和边更少,但可能需要更多的时间来处理这些节点。

示例

假设我们有一个简单的树状结构,我们想要找到深度为3的节点。使用IDS,我们会这样操作:

  • 设置深度限制为1,执行DFS,不找到目标。
  • 增加深度限制到2,再次执行DFS,仍然不找到目标。
  • 增加深度限制到3,执行DFS,找到目标节点。

应用

IDS常用于搜索算法中,特别是在解谜游戏(如八数码问题)、人工智能中的路径规划问题,以及任何需要在树或图中找到特定节点的场景。

注意事项

  • IDS在实际应用中可能需要根据问题的特性进行调整,以优化性能。
  • 在某些情况下,IDS可能不如专门的BFS或DFS有效,尤其是在搜索空间非常大或目标节点非常深的情况下。

迭代加深搜索是一种实用的搜索策略,它结合了BFS和DFS的优点,提供了一种平衡时间和空间复杂度的解决方案。

在Java中实现迭代加深搜索(Iterative Deepening Search, IDS),你可以使用递归方法来执行深度限制的深度优先搜索(Depth-Limited Search, DLS)。以下是一个简单的Java实现示例,它使用了一个简单的树结构来展示如何实现IDS。

类定义

首先,我们定义了一个简单的树节点类TreeNode,用于构建树结构:

class TreeNode {String data;    // 节点存储的数据TreeNode left;  // 指向左子节点的指针TreeNode right; // 指向右子节点的指针TreeNode(String data) {this.data = data;left = null;right = null;}
}

迭代加深搜索

IterativeDeepeningSearch类中包含了执行IDS的核心方法:

public static void iterativeDeepeningSearch(TreeNode root, String target, int depthLimit) {// 检查根节点是否为空if (root == null) {return;}// 如果深度限制足够大,说明搜索空间没有限制,直接使用深度优先搜索if (depthLimit < Integer.MAX_VALUE) {depthFirstSearch(root, target, 1, depthLimit);} else {// 否则,开始迭代加深搜索int currentDepth = 1; // 当前搜索的深度boolean found = false; // 是否找到目标do {// 执行深度限制的深度优先搜索found = depthFirstSearch(root, target, currentDepth, currentDepth);// 如果当前深度没有找到目标,增加深度限制currentDepth++;} while (!found && currentDepth < Integer.MAX_VALUE); // 直到找到目标或搜索空间耗尽}
}

深度限制的深度优先搜索

depthFirstSearch是一个辅助方法,用于执行带有深度限制的DFS:

private static boolean depthFirstSearch(TreeNode node, String target, int currentDepth, int depthLimit) {// 检查节点是否为空或当前深度是否超出深度限制if (node == null || currentDepth > depthLimit) {return false;}// 如果当前节点包含目标数据,返回trueif (node.data.equals(target)) {return true;}// 否则,递归搜索左子树和右子树// 搜索时,当前深度加1return depthFirstSearch(node.left, target, currentDepth + 1, depthLimit) ||depthFirstSearch(node.right, target, currentDepth + 1, depthLimit);
}

主函数

在main函数中,我们创建了一个树结构,并调用了iterativeDeepeningSearch方法来开始搜索:

public static void main(String[] args) {// 创建树结构TreeNode root = new TreeNode("A");// ... 构建树的其他部分// 定义要搜索的目标String target = "G";// 开始迭代加深搜索,初始深度限制为1iterativeDeepeningSearch(root, target, 1);// 如果搜索过程中找到了目标,打印消息if (depthFirstSearch(root, target, 1, Integer.MAX_VALUE)) {System.out.println("Target found!");} else {System.out.println("Target not found.");}
}

在main函数的最后,我们调用了depthFirstSearch方法,这次没有深度限制,来最终确认目标是否被找到。这是因为在实际的IDS实现中,一旦确定了目标所在的最小深度,就可以无限制地搜索以找到目标。

注意

  • depthLimit参数在iterativeDeepeningSearch方法中用于控制搜索的深度。如果这个值设置为Integer.MAX_VALUE,则表示没有深度限制,搜索将退化为普通的深度优先搜索。
  • currentDepth参数在depthFirstSearch方法中用于跟踪当前的递归深度,确保搜索不会超出设定的深度限制。
  • found变量用于标记是否找到目标节点,如果找到,则终止搜索。

这个实现展示了IDS的基本思想,即通过逐渐增加深度限制来重复执行深度优先搜索,直到找到目标节点或搜索整个树。

这篇关于人工智能路径规划算法:迭代加深搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939456

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表